Report of the International Review Committee on the Meeting at the Hiroshima Synchrotron Radiation Center March 14-15, 2024

Review of Scientific Research

Table of Contents

Members of International Review Committee

Executive Summary

Introduction

Research Highlights

- 1-1. Electronic structure analysis (BL-1, BL-9A, laser PES)
- 1-2. Spin structure analysis (BL-9B, laser spin-ARPES)
- 1-3. Nanomaterial analysis (BL-14)
- 1-4. Circular dichroism of biomaterials (BL-12)
- 1-5. Light source accelerators and insertion devices

Research Areas

- 2-1. Electronic structure analysis (BL-1, BL-9A, laser PES)
- 2-2. Spin structure analysis (BL-9B, laser spin-ARPES)
- 2-3. Nanomaterial analysis (BL-14)
- 2-4. Circular dichroism of biomaterials (BL-12)
- 2-5. Light source accelerators and insertion devices

Including present status and future perspectives

Appendix

- Number of students who earned master's and doctoral degrees using HiSOR
- List of publications (2017-2023)
- List of proposals (2017-2023)

Members of International Review Committee:

Professor HanWoong Yeom (Chair) Pohang Science and Technology (POSTECH), Korea

Professor Daniel S. Dessau University of Colorado Boulder, USA

Professor Shaukat Khan

Technische Universitaet Dortmund, Germany

Professor Frank Wien Synchrotron SOLEIL, France

Professor Manuel Valvidares ALBA Synchrotron Light Source, Spain

Executive Summary

The International Review Committee (IRC) met at Hiroshima University on March 14-15, 2024, to review the scientific programs and the future plan of HiSOR. The IRC had been provided with extensive background material before the meeting and complementary information during the review.

The HiSOR management and scientists were most helpful in answering questions and providing extra materials requested during the review and the IRC commends the Director for a very professionally organized meeting. The IRC also wants to express its gratitude for the hospitality it was shown throughout its stay at HiSOR.

The review was in conjunction with the 28th Hiroshima International Symposium on Synchrotron Radiation. This allowed the IRC to listen to a number of excellent presentations by HiSOR scientists and users and interact with young scientists at a poster session that gave a very nice survey of recent research activities. The posters were very informative and consistently of excellent quality. The IRC was impressed by the high motivation of the young students involved in HiSOR research activity.

In the opening address to the Symposium the Vice President of Hiroshima University, Professor Atsushi Sugeta underlined the important role of HiSOR for research and education at this University. The IRC was impressed by the commitment the University Administration has to the success of HiSOR. He further explained that HiSOR has become a crucial part of the new national funding, the J-Peak program, which started this year to enhance the research and industrial cooperation of outstanding universities. Hiroshima University plans to enhance its collaboration with semiconductor, meta matter, and bionanotechnology industries utilizing HiSOR, which is a unique synchrotron radiation facility among Japanese universities.

The Director of HiSOR, Professor Kenya Shimada, gave a most impressive summary of the research activities during the last five years. The scientific productivity is remarkable with a reasonable number of publications, a significant fraction in the most distinguished peer-reviewed physics, chemistry, and biology journals. IRC was particularly impressed by the effort of HiSOR for a consistent operation during the COVID-19 period and a quick recovery afterward in its scientific productivity and user activity.

HiSOR has been highly successful in the implementation of the "Joint Usage" format imposed by MEXT of Japan, in which HiSOR staff scientists are directly involved in the collaborative research triggered by external users in addition to their own research activity. The IRC congratulates HiSOR to this success and strongly recommends that the "Joint Usage" format is continued with a proper support from MEXT and Hiroshima University. The IRC also acknowledges that collaborations with world-renowned international researchers account for about 63% of the publications produced and are established solidly as an important part of the HiSOR operation. The IRC thinks that HiSOR has contributed to the development of VUV synchrotron-radiation-based science of the world. HiSOR is in an excellent position to further expand these activities in attracting world-leading researchers and to enhance Japan's role in global scientific collaboration.

The IRC finds that HiSOR is doing exceptionally well in the maintenance and continued upgrades of the accelerator systems, the beamlines, the end-stations, and off-line supporting facilities; in particular considering the largely-limited number of staff and operating cost.

The IRC is highly impressed by the number of graduate students who got their master's and doctoral degrees based on works using HiSOR, which amounts to 50 and 33 students, respectively in 2017-2023. This number is gradually increasing demonstrating the increasing educational contribution of HiSOR. This outcome fits ideally to the expected role of a synchrotron radiation source belonging to a University.

Professor Shimada emphasized five focused research areas for HiSOR, on each of which the corresponding HiSOR staff reported a more detailed summary of the activity.

- High-Resolution Photoemission Spectroscopy for Electronic Structure Analysis
- Spin-Resolved Photoemission for Spin Structure Analysis
- Soft X-Ray MCD of Surface Nano Structures
- VUV Circular Dichroism Spectroscopy of Biomolecules
- Light Sources Accelerators and Insertion Devices

The IRC summarizes its opinion on the HiSOR activity in the above five research areas as follows.

High-Resolution Photoemission Spectroscopy for Electronic Structure Analysis

The rotation of the BL-1 main chamber around the light incidence allows for a unique setup where the degree of linear polarization remains at 100% all the time. Such a polarization-dependent ARPES measurement enables users to disentangle multi-band systems and the orbital texture of each band based on the dipole selection rule. The dramatically decreased beam spot size, new nano stage, and new analyzer enable users to perform the most precise measurements.

The high-resolution variably polarized low-energy photons from the APPLE-II undulator at BL-9A provide an excellent environment to investigate fine details in the electronic structure near the Fermi level. The installation of the fully motorized 6-axes goniometer and the new analyzer with a wide detector angle (ultimately ± 30 deg, presently operating at ± 19 deg) enables users to cover significant ranges of k-space for high-quality ARPES measurement, which is more challenging at low photon-energy. The electrodes installed in the manipulator provide exciting opportunities for researchers to do in-operando measurements.

The recently commissioned µ-Laser ARPES machine has proven to be a highly competitive

setup and has gotten much attention from different groups inside and outside of Japan for its attractive combination of spatial, angular, and energy resolution.

Spin-Resolved Photoemission for Spin Structure Analysis

Equipped with a very-low-energy-electron-diffraction (VLEED) spin detector, that was developed in-house with an order-of-magnitude-higher efficiency than a conventional highenergy Mott spin detector, and Apple II undulator synchrotron radiation in a very efficient photon energy range, HiSOR has been one of the most active and competitive centers for spinresolved ARPES (S-ARPES) research in the world.

In his talk Dr. Miyamoto gave a status report of this facility. The VLEED spin-resolved ARPES system has demonstrated an energy resolution of $\Delta E \leq 10$ meV, an angular resolution of 0.4° and the capability of 3D spin vector analysis, which are among the highest resolutions reached in spin-resolved ARPES in the world and enables precise spin-resolved measurements that require high energy and angular resolutions.

The versatile sample facilities permit the preparation of a variety of samples efficiently, which was updated with lower-temperature capability down to 6 K.

The system was further upgraded by reducing the beam size on the spot by 1/10 (500×100 micron scale) with a capillary mirror. This will be important for various exfoliated 2D materials and in-operando measurements.

The IRC also heard about the construction of an extra off-line spin-ARPES system using 6-eV laser, which provide higher energy and momentum resolution, a different photon energy range, and a much higher spatial resolution of 5 micron. The IRC agrees that this system is a powerful complement to the existing spin-ARPES beamline facility in various ways.

The IRC is impressed by the continued upgrade of the system and the continued production of high-level research results and publication by the internal group, domestic users and international users.

The IRC also find that the on-going development of the VLEED spin detector system utilizing multi-channel spin detector would be another important contribution of HiSOR to the world community when it is successfully constructed.

Soft X-Ray MCD of Surface Nano Structures

In the light of the publication and proposal record provided over the last 5 years (2018-2023), BL14 beamline and XMCD endstation have successfully accomplished remarkable results over the period, with around 10-15 manuscripts in good quality peer review journals (plus some recent excellent results pending publication in judgment of the results shown in the 28th HiSOR

meeting). The talk by Dr. Masahiro Sawada (BL14 scientist), and the additional user presentation by Dr. Naoyuki Maejima (from Rikkyo University and Institute of Molecular Science presentation) highlighted the use of XAS and XMCD approaches on the investigation of hybrid 2D/FM interfaces and Ni_xP/Fe_2P bilayers, evidencing excellent performance and the capability to complete cutting edge nanomagnetism studies.

Besides, a novel endstation for soft x-ray reflectometry is under installation and appears to be in large progress or almost ready for commissioning (no measurements were yet shown). This effort is commendable and well received: such an instrument enables complementary approaches to the XAS, XMCD techniques and broadens the beamline usage, offering novel opportunities and widens the portfolio of techniques at the service of the HiSOR community.

Looking back at the recommendations for XMCD endstation already made by the International Review Committee back in 2018 (see related 2018 report), one finds: i) extension of the cryogenic temperatures below liquid nitrogen (i.e. liquid Helium); ii) implementation of a larger (high) field magnet, either a superconducting magnet or a high field magnet; iii) addition of a fluorescence sensor for measurements on insulating samples. Such recommendations still apply now in 2024, and will be the highest priority recommendations for BL14. We advise to look onto cryogen free solutions (cold gas recirculation, recondensing), 2T fast ramp (2T/s) electromagnets for fast field switching (especially if polarization switching remains unavailable) and implement even low-cost simple diode-based fluorescence, transmission/x-ray excited luminescence detection which are really low cost but provide a lot of additional information or solutions to insulating samples, operando studies.

It is too early to provide recommendations on the soft x-ray reflectometry endstation, but addition for a 2D detector (CCD, sCMOS) enabling off-plane resonant scattering (transmission, GISAXS, but in soft x ray range even grazing angle is not so relevant or interesting) is worth start thinking about. This would become even more relevant if HiSOR is updated to a synchrotron source with enhanced coherence.

It feels urgent to increase staffing of the beamline to further boost the already good productivity of the beamline and XMCD endstation, which will become even more relevant in the context of an eventual machine upgrade. One way will be fostering the participation of the beamline scientist on national research grants as PI, in collaboration with other researchers, in order to have shared PhDs and postdocs.

The beamline upgrades should take into account the possibility of an updated HiSOR machine, so any significant investment of money and resources is also useful and well adapted to such eventual novel scenario and the corresponding beamline or endstations conditions (which may differ from present).

VUV-CD Spectroscopy of Biomaterials

BL-12 represented by Dr. Koichi Matsuo has been and still is proof of a well functioning beamline. The field of interest includes the biophysical and structural biology. BL-12 offers a continuous operation during the working hours, allowing circular (CD) and linear (LD) dichroism as well as absorption spectroscopy. The vacuum-ultraviolet (VUV) CD spectrophotometer at BL-12 extends the CD spectra to the VUV region down to 170 nm for aqueous solutions and to 140nm for films. Low noise, low sample consumption (microliter range) and quick data acquisition provide structural information, that is unattainable with conventional CD instruments. Applications include membrane proteins, saccharides, nucleotides and disordered protein structure analysis, as well as protein-protein interactions, protein-nucleotide interactions and protein lipid interactions.

The group of Dr. K. Matsuo has been joined by a Dr. Mohamed Ibrahim (assistant professor), who has been a real asset considering that he has already published! Also, like previously (2018) stated, the recruitment and of new beamline-staff increases the possibilities for exploring the beamline as well as accommodating and helping users and recruiting students more efficiently. I have been impressed by the present output 17 papers and usage of the VUV-CD. Keeping in mind that there has certainly been an interruption during the COVID pandemic and its restrictions.

Developments in place such as the vertical acquisition dispositive including a Schwartzschild focusing lens, microfluidic devices controlling the protein membrane dynamics (time resolved), as well as multi well plate reading and last but not least a Cuette flow cell for analysis of macromolecular orientation within liquid samples are new methodologies and devices, which add up to the existing equipment such as the sublimation chamber, for thin film preparations of organic chiral molecules, and microfluidic continuous flow and stopped flow set-ups.

The installation of an automated temperature stepping mode (-20°C to 100°C) for CD and absorption spectroscopy is now in place and allows access to thermodynamics and thermal-stabilities assays of biological macromolecules in solution. Further developments which have been discussed with the beamline staff include the development and implementation of a dedicated linear dichroism.

The latest addition of the ChiroPoly Probe system for real-time monitoring of CD signals from free radical polymerisation processes will be a great asset also to attract scientist from chemistry backgrounds in addition to life scientists.

The IRC strongly supports the investigations into these novel developments to pave the way for a new HiSOR light source. VUVCD will be an essential part of the new beamlines in the potential upgrade to HiSOR-II.

In a conclusion, important improvements over the past 6 years have been made. BL-12 remains and is a very productive tool for structural biology, glyco-biology and in a more general way

for chrial macro-molecular studies where other techniques fail due to size of the molecules or their complicated flexible structures.

Light Sources Accelerators and Insertion Devices

The IRC is impressed by the performance of the HiSOR light source despite its age of 28 years and being operated by a very small accelerator group. Pursuing aging-related issues with high priority and updating the control system are measures which are highly appreciated. Replacement of the presently leaking copper absorber should also be considered for the other dipole as a preventive measure.

The Director of HiSOR explained future storage ring options with a circumference ranging from 40 to 50 m for a diffraction-limited new facility HiSOR-II with six straight sections. The IRC fully agrees that technical improvement of this already very optimized machine is hardly possible and stable operation is becoming more and more difficult, while the research opportunities in physics, chemistry and biology offered by HiSOR are indispensable. Given the time scale for designing, constructing and commissioning a new light source, the IRC strongly recommends that the Hiroshima University decides on future plans for HiSOR as soon as possible and forwards them to the MEXT level.

Investment in HiSOR pays best when that machine is used to full capacity. The present operation time of 1600 hours per year for users may suggest that the demand for such a light source is not very high. In order to avoid such an impression and as requested by the users, HiSOR should make an effort to operate for more hours. The IRC understands that operation time is limited by manpower, HiSOR may consider the options that have been successfully practiced at other light sources. That is, leaving the machine unattended after the last injection, and training students as operators. The latter has the positive side-effect that more students get interested in master/doctoral work at HiSOR.

Not only the beamlines but also the accelerator physics group would profit from additional manpower, particularly when preparing a Conceptual Design Report to apply for a new machine. A sound concept for such a machine requires detailed simulations including nonlinear effects and a professional technical layout of accelerator components. The IRC recommends funding for one additional accelerator physicist and at least one more engineer or technician.

Future of HiSOR

The Director of HiSOR explained the future plan of the HiSOR, which mainly focuses on the construction of a new synchrotron to replace its 28-year-old machine. The IRC agrees fully with the fact that the old synchrotron is not very close to ending its lifetime and the continuation of a stable operation would become more and more difficult from now on. This will make the

continuation of the very high-quality domestic and international research activity in HiSOR impossible in near future. The IRC also fully agrees that the research opportunity offered by HiSOR is indispensable in the physics, chemistry, and biology community worldwide and cannot be replaced by other facilities. Considering the long time for the construction of a new synchrotron radiation facility, the IRC strongly recommends that the future plan of HiSOR be decided as soon as possible at the Hiroshima University and MEXT level. The current plan proposed by HiSOR Director is to make a new compact synchrotron radiation source with an electron energy of 500 MeV and four to six undulators. The IRC acknowledge that this is a reasonable and strategic plan to compromise the budget/man-power situation and the scientific opportunity. The IRC strongly supports the future plan of HiSOR.

Pohang, March 30, 2024. Han Woong Yeom Chair, on behalf of the IRC

Introduction

The Hiroshima Synchrotron Radiation Center, HiSOR, is the only synchrotron radiation facility that is attached to a national university in Japan. It was established in 1996, as part of the academic policies of the Japanese government. The mission of HiSOR is to promote advanced research in the field of condensed matter physics and biomolecule research using synchrotron radiation in the ultraviolet and soft x-ray range, as well as to develop human resources. In 2010, HiSOR was authorized as a "Joint Usage / Research Center" by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). As a result of extensive research activities in collaboration with researchers from inside and outside of Japan, HiSOR was graded "A" for the 1st term-end evaluation in 2015 and "A-" in 2022 by the MEXT. In 2016, the authorization as the Joint Usage / Research Center was extended for 6 more years. The mid-term evaluation is planned in 2024.

According to this authorization, HiSOR is focusing on the following research:

- 1. Research on quasiparticles by ultrahigh resolution photoemission spectroscopy
- 2. Research on spin structures by spin- and angle-resolved photoemission spectroscopy
- 3. Structural analysis of biomolecules in solution by VUV-CD
- 4. In situ fabrication and characterization of magnetic nanostructure by SXMCD
- 5. R&D for a compact low-emittance light source

In this context the International Review Committee (IRC) was charged to evaluate the scientific research activities at HiSOR. Below is a detailed assessment of the five research areas listed above.

The IRC had been provided with extensive background materials in advance of the evaluation that took place March 14-15, 2024. The evaluation was in conjunction with the 28th Hiroshima International Symposium on Synchrotron Radiation. This gave the IRC an excellent opportunity for insights into the activities at HiSOR. In the opening address the Vice President of Hiroshima University, Prof. Sugeta, emphasized the important role of HiSOR for research and education at Hiroshima university. Dr. Shimada, the director of HiSOR, gave a clear perspective of the present activities and future plans for the facility. Five HiSOR scientists, Drs. Miyamoto, Sawada, Matsuo, Ideta and Kato gave presentations of the key areas of the research. In a lively poster session with 32 contributions, young researchers presented their results on well-prepared posters. The IRC greatly appreciated the opportunity to interact with the enthusiastic and highly motivated students.

During the evaluation process on March 14 the HiSOR management was most helpful in answering all the questions and requested clarifications from the IRC members. The IRC wants to express their sincere thanks to the management for its extended efforts in making the evaluation process both informative and transparent.

Research Highlights

1-1. High resolution ARPES (BL-1, BL-9A, and laser PES)

Y.-J. Hao et al., "Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi₂Te₄", Phys. Rev. X <u>9</u>, 041038 (2019).

By using high-resolution angle resolved photoemission spectroscopy, a gapless Dirac cone at the (0001) surface of MnBi₂Te₄ has been observed inside the bulk band gap. Such an unexpected surface state remains unchanged across the bulk Néel temperature, and is even robust against severe surface degradation, indicating additional topological protection. These results unveil the experimental topological properties of MnBi₂Te₄, revealing that the intrinsic magnetic topological insulator hosts a rich platform to realize various topological phases by tuning the magnetic or structural configurations, and thus push forward the comprehensive understanding of magnetic topological materials.

Surface and bulk electronic structure of MnBi₂Te₄. ARPES intensity plots are taken at $h\nu = 6.3$ eV, T = 10 K.

Y. Zhang et al., "In-plane antiferromagnetic moments and magnetic polaron in the axion topological insulator candidate EuIn₂As₂", Phys. Rev. B <u>101</u>, 205126 (2020).

A systematic study of the axion topological insulator candidate EuIn₂As₂. A linear energy dispersion across the Fermi level reveals a hole-type Fermi pocket. The orientation of the magnetic moment for ground state is determined within the ab-plane by anisotropic magnetic behavior. Besides long-range antiferromagnetic order, magnetization and magnetotransport measurements indicate existence of the ferromagnetic orders and

ferromagnetic correlation, suggesting the formation of the magnetic polarons. These ferromagnetic clusters can persist above the antiferromagnetic transition leading to unconventional transport properties.

Crystal structure of EuIn₂As₂.

Valence band structure along the K-Γ-K direction and Fermi surface map.

S. Ideta et al., "Hybridization of bogoliubov quasiparticles between adjacent CuO₂ layers in the triple-layer cuprate $Bi_2Sr_2Ca_2Cu_3O_{10+\delta}$ studied by angle-resolved photoemission spectroscopy", Phys. Rev. Lett. <u>127</u>, 217004 (2021).

Hybridization of Bogoliubov quasiparticles (BQPs) between the CuO_2 layers in the triple-layer cuprate hightemperature superconductor $Bi_2Sr_2Ca_2Cu_3O_{10+\delta}$ is studied by angle-resolved photoemission spectroscopy (ARPES). In the superconducting state, an anticrossing gap opens between the outer- and inner-BQP bands, which we attribute primarily to interlayer single-particle hopping with possible contributions from interlayer Cooper pairing.

Momentum dependence of ARPES intensity plots taken at low photon energy in the triple-layer cuprate, $Bi_2Sr_2Ca_2Cu_3O_{10^+\delta}.$

1-2. Spin-resolved ARPES (BL-9B, and laser spin-ARPES)

K. Sumida et al., "Spin-polarized Weyl cones and giant anomalous Nernst effect in ferromagnetic Heusler films", Commun. Matter 1, 89 (2020). [56 citations, Top 7%]

A Co₂MnGa Heusler alloy has been theoretically predicted to be a ferromagnetic Weyl semimetal and has been experimentally demonstrated in the bulk form to exhibit large anomalous transport properties under an external magnetic field. This research is the first observation of spin texture in the Heusler alloy and provided the reliable guiding principle to maximize the Nernst thermopower by the band engineering utilizing the SARPES, transport measurements, and ab initio calculations.

Crystal structure (Left), calculated band structure(middle) and the observed spin polarized map(right) of Co₂MnGa.

M. Sakano et al., "Radial Spin Texture in Elemental Tellurium with Chiral Crystal Structure", Phys. Rev. Lett. 124, 136404 (2020). [75 citations, Top3%]

Several calculations studied on the nonmagnetic chiral materials have predicted that the peculiar spin texture should appear all around the highly symmetric k points, due to a lack of mirror symmetry and space inversion symmetry with a combination of spin-orbit interaction. This research clarified that the spin of chiral material Te exhibits a hedgehoglike texture, which leads to unconventional magnetoelectric effects, by spin- and angle-resolved photoemission spectroscopy.

(a) (b) Left-handed chiral structure of Te. ARPES image and spin polarization near H in Brillouin zone for the left-handed crystal recorded at hv=18eV.

S. Wu et al., "Direct evidence of hidden local spin polarization in a centrosymmetric superconductor $LaO_{0.55}F_{0.45}BiS_2$ " Nat. Commun.8, 1919 (2017). [51 citations]

Although it was believed that the Rashba (or Dresselhaus) effect is caused by the broken spatial inversion symmetry and strong spin-orbit interaction, it is predicted that there might be hidden spin-polarized electronic states even in the centrosymmetric materials by the local symmetry breaking (Zhang, X. et al. Nat. Phys. 10, 387–393 (2014).) This study reveals that such hidden spin-polarized electronic states exist in the newly discovered superconductor $LaO_{0.55}F_{0.45}BiS_2$, by using spin-resolved photoemission spectroscopy under surface -sensitive conditions.

1-3. Nanomaterial analysis (BL-14)

X. Hou et al., "Observation of mid-gap states emerging in the O-terminated interface of Cr₂O₃/graphene: A combined study of ab initio prediction and photoemission analysis", Appl. Surf. Sci. 594 (2022) 153416.

Interfacial electronic structure between graphene and Cr_2O_3 film was investigated, whose magnetic state is important for spintronic applications. The oxygen terminated type of the interface (top) was confirmed, where spin polarized mid-gap states originated from the spin-up Cr $3d_z^2$ orbitals near the Fermi level were predicted in DFT calculation (bottom left) and experimentally confirmed by ARPES study (bottom right). The spin channels of the mid-gap states can be switched by changing the substrate magnetization direction.

Y. Naruo et al., "Ferromagnetic metal conversion directly from two-dimensional nickel hydroxide", Nanotechnology 31 (2020) 435602.

A direct metallic conversion from nickel hydroxide nanosheets to nickel metal nanostructures was founud through thermal annealing process in vacuum. The metal transition of the single-layer nanosheets (top) deposited on a Si substrate was revealed by XAS. The XAS signal (bottom left) significantly changed at annealing above 250 temperatures °C, where corresponding ferromagnetic XMCD signals (bottom right) emerged from nonmagnetic state of nickel hydroxide. Atomic force microscopy measurements indicate that diffusions of nickel atoms on the substrates leads to a structural change from a 2D-like structure to a particle-like structure.

1-4. Circular dichroism of biomaterials (BL-12)

M. Kumashiro et al., "Formation of beta-strand oligomers of antimicrobial peptide magainin 2 contributes to disruption of phospholipid membrane", Membranes, 12, 131 (2022).

Antimicrobial peptides (AMPs) interact with and damage the cell membranes of antimicrobial-resistant microorganisms. To gain new insights into AMP design strategies, we characterized the membrane interaction mechanism of the model AMP, magainin 2 (M2) using synchrotron-radiation circular dichroism, linear dichroism, and fluorescence spectroscopies. The results showed that α -helix monomers of M2 assembled and transformed into β -strand oligomers with increasing peptide-to-lipid molar ratio, destabilizing the membrane structure. Our findings suggest thatthe formation of β -strand oligomers of M2 contributes to the disruption of the cell membrane.

Disruption process of lipid membrane by formations of $\beta\text{-strand}$ oligomers and of $\alpha\text{-helix}$ monomer of Magainin 2

K. Matsuo and K. Gekko, "Vacuum ultraviolet electronic circular dichroism study of D-glucose in aqueous solution", Journal of Physical Chemistry A, 124, 642 (2020).

VUVCD exhibited unique spectra depending on the α -anomer and β -anomer configurations of the hydroxyl group at C-1, and the three gauche (G) and trans (T) rotamer conformations (GT, GG, and TG) of the hydroxymethyl group at C-5. These unique spectra could be ascribed to differences in the patterns of intramolecular hydrogen bonds around the hydroxymethyl group at C-5 for the three rotamers and around the hydroxyl group at C-1 for the two anomers. The strengths of these intramolecular interactions increased as the degree of hydration around the corresponding chromophores decreased, suggesting that hydration is a key factor for stabilizing rotamer and anomer structures.

(a) Chemical structure of D-glucose (b) Theoretical CD spectra of three rotamers of α -D-glucose and two anomers of D-glucose (c) Unique conformations and hydrogen network of each isomers.

M. E. Esmael, et al., "Lipid-membranes interaction, structural assessment, and sustainable production of polyhydroxyalkanoate by *Priestia filamentosa* AZU-A6 from sugarcane molasses", Int. J. Biol. Macromol., 242, 124721 (2023).

The study investigated the polyhydroxyalkanoate (PHA)-lipid interactions via circular dichroism (CD) spectroscopy and offered a sustainable PHA production approach employing a cost-effective microbial isolate, *Priestia filamentosa* AZU-A6. Characterization techniques including FTIR, NMR, GC-MS, DSC, and TGA techniques identified the biosynthesized PHA's as poly-3-hydroxybutyrate (PHB). On the other hand, CD observations suggested that chemistry of lipid molecules governs lipid-PHB interactions, potentially impacting PHB structuration.

(a) Morphology of PHB pellets on cultivation plate and TEM produced by *P. filamentosa* AZU-A6; (b) PHB structuration affected by interacting with various lipid molecules using CD spectroscopy (DMPC:1,2-dimyristoyl-*sn*-glycero-3-phosphocholine, DOPS:1,2-dioleoyl-*sn*-glycero-3-phospho-L-serine; DOPC:1,2-dioleoyl-*sn*-glycero-3-phosphocholine, and DOPE: 1,2-dioleoyl-*sn*-glycero-3-phosphoethanolamine.

1-5. Light source accelerators and insertion devices

Design work on HiSOR-II

We decided the target parameters of HiSOR-II such that the emittance is around 10 nm and the electron energy 500 MeV. With these parameters, HiSOR-II will give almost diffraction limited VUV light whose brightness is larger by almost two orders of magnitudes than that of the present HiSOR. HiSOR-II will be operated in the topup injection mode. We are considering several options to be able to respond flexibly to future changes in the circumstances surrounding the facility. The circumference of the ring may be between 30m and 50m. The injector may be a newly constructed full energy booster synchrotron or the re-use of the present HiSOR as the booster. Sustainability will be the key concept of HiSOR-II. The hardware developments, such as permanent/electric hybrid magnets or new beam injection scheme with pulsed multipole magnets are in progress as collaborating with KEK Photon Factory, UVSOR and Nagoya University.

Layout of HiSOR-II Accelerator system.

Developments and Improvements on the present HiSOR

We continue the efforts on improving the performance of the present HiSOR. An example is the improvements on the undulator control system. In the first step, we made it possible to control the undulators from the beamline control system. However, because the improvement was realized based on the present accelerator control system, the time response is not sufficiently high and the orbit correction is not sufficiently precise as requested from the users. We are preparing a totally new system which is separated from the accelerator control system but accessible both from the accelerator control system and the beamline ones.

The aging issue of the accelerator components becomes serious year by year. To avoid a long shutdown caused by a hardware trouble, we are systematically updating the components in a prioritized manner. Currently, we are developing a new pulse magnet power supply which will utilize semiconductor switching devices instead of thyratron.

Research Areas

1-1. Electronic structure analysis (BL-1, BL-9A, laser PES)

Current Status

Angle-resolved photoemission spectroscopy (ARPES) is the most direct and powerful tool to directly reveal the electronic states in solids, such as energy band dispersions, qusiparticle states, and Fermi surfaces. Since the initial stage of HiSOR, HiSOR has promoted high-resolution ARPES in the ultraviolet and soft-x-ray region at the undulator beamlines BL-9A (hv = 6 - 40 eV) and BL-1 (hv = 26 - 300 eV) and has been a world-leader in this field. In order to improve spatial resolution as well as energy and angular resolution, HiSOR introduced a laser beam with a spot size around 5 µm to a newly commissioned offline µ-Laser ARPES machine [H. Iwasawa *et al.*, Ultramicroscopy **182**, 85 (2017), 2023-17], which also rapidly became a world leader.

ARPES with low energy photons ($hv < \sim 10 \text{ eV}$) is especially critical for if one wishes to maximize the bulk sensitivity, energy-resolution, and momentum resolution of an ARPES experiment. Good examples are studies examining many-body effects [2022-19] and the fine structure of momentum dependence of superconducting gaps [2021-18] in cuprates, as well as detailed examination of the Rashba splitting in the surface state on Re(0001) [2023-4]. A wide range of higher photon energies are essential to investigate the k_z (i.e. bulk) dispersion of electronic bands and matrix element effects, and distinguish surface-derived states from bulk states. A combination of the two photon energy ranges (low and high) allows for detailed spectral analysis by using BL-1 and BL-9A.

These days, topological materials such as topological insulators and Dirac/Weyl semimetal have attracted great interest, and many photon-energy-dependent ARPES measurements have been performed at BL-1 to reveal the three-dimensional electronic structure of these materials. In these cases, flat cleaving surfaces were often smaller than the previous beam spot size on the sample [300 (H) μ m × 200 (V) μ m]. This in turn reduced the number of successful measurements on such systems due to the large number of cleaving attempts necessary to obtain a large enough surface, leading to a strong demand to reduce spot size on the sample.

In order to solve these problems, the HiSOR team has improved the spatial and energy resolutions. To decrease the beam size, they have installed ellipsoidal focusing mirrors (SIGRAY), successfully reduced the beam spot size down to 80(H) μ m × 45(V) μ m (50 μ m x 30 μ m is expected to be possible in the near term). In addition, they have motorized the operation of the MF mirror for fine tuning. Consequently, they have successfully demonstrated the spatial mapping on the sample allowing much easier operation and higher ARPES fidelity. In addition, they have installed two new electron-energy analyzers with angle-deflecting optics that enable $\theta_x - \theta_y$ mapping at BL-1 (MBS A1) and BL-9A (SPECS ASTRAIOS 190 with wide detector angle). With these analyzers and beam focusing optics, they can fix the beam spot position on the sample and get Fermi surface mapping without moving the angles of the sample. These analyzers enable the users to obtain precise measurement with ~0.1 (deg) mapping. The energy resolution at BL-1 has reached around 4.5 meV at $h\nu = 25$ eV and 60 eV which is extremely good performance. The manipulators are controlled by an in-house LabVIEW software with arbitrary choices of mapping dimensions [H. Iwasawa *et al.*, J. Synchrotron Rad. **24**, 836 (2017).]. Now, one can automatically perform ARPES mappings using arbitrary combinations

of directions (polar, azimuth, tilt, x, y, z). In addition, the nano-stage has been installed on BL-1. By combination with the tens of micron-sized beam spot, it enables users to reproduce sample positions with the same ordered precision and perform detailed spatial mappings with high lateral resolution [2023-3].

As for BL-9A, using the ARPES system with variable polarized low energy photons ($h\nu = 6-40 \text{ eV}$) provided by the APPLE-II undulator, users can investigate fine details of the electronic structure. Due to continued efforts to improve the beamline optics, and specifically the monochromator stability, photons with linewidths below 1 meV can be provided for energies below 10 eV [M. Arita et al., Phys. Rev. B 77, 205117 (2008)]. HiSOR staff have also successfully focused the beam on the sample surface around 600 μ m (H) \times 100 (V) μ m, but in near future it is expected that the beam will be focused around 90 μ m (H) \times 40 (V) μ m using capillary microfocus optics. In addition, to improve the spatial resolution, they have upgraded the lowtemperature 6 axes manipulator of BL-9A. This is a fully motorized high precision 6-axes goniometer (temperature range: 12-370 K, azimuth angle rage: $\pm 90^{\circ}$, tilt angle range: -25° to $+50^{\circ}$) that enables the user to measure Fermi surface maps over a wide momentum range via tilt or azimuth rotations. They have also installed the new analyzer on BL-9A then one can fix the beam position on the sample and can do ARPES mapping without moving the orientation of the sample. The analyzer can be linked to an external PC for controlling external devices such as goniometer, enabling various automatic ARPES measurements. The high precision goniometer is also effective to measure band dispersions along high-symmetry lines for small Fermi surfaces located close to the Γ point of the surface Brillouin zone. Representative results obtained at BL-9A over the last 5 years include the elucidation of the mixing gap observed in the triple-layer cuprate superconductor, Bi₂Sr₂Ca₂Cu₁₀₊₈ [2021-18], the observation of two dimensional anisotropic Dirac cone in a monolayer boron sheet [2018-4], the observation of Rashba-like spin splitting PtBi₂ [2019-8], and the acceleration of a metal-insulator transition in topological semimetal nanofilms [2021-16].

To perform various advanced experiments at the beamlines, sample preparation and characterization are also important. They connected a preparation chamber for non-cleaving samples at BL-1 and BL-9A that can characterize samples using LEED and Auger electron spectroscopy. For sample preparation, Ar ion sputtering and annealing (direct current as well as electron bombardment) can be performed [2022-2, 3]. A newly designed preparation chamber manipulator head allows for annealing temperatures higher than 2000 K with room for additional flashing of the sample. In addition, depending on the user's requirements, it is possible to install evaporators and gas doser if needed. At BL-1, the preparation chamber is independent from the main transfer route allowing for the measurement of cleaving samples while more demanding sample preparation chamber.

Starting in 2014, they have developed and commissioned the stand-alone μ -Laser ARPES machine at HiSOR [#1]. Within the first year they were able to achieve ultimate energy resolution (260 μ eV deconvolved at 7.2 K with 0.75 meV and 1.5 meV resolution as common user choices during experiments) and open to the user community. Focusing on achieving ultimate angle as well as spatial resolution they upgraded the manipulator stage ("nano-stage") and replaced pinhole apertures used for reducing the spot size with focusing optics. This allowed them to achieve ultimate angle (undetectable Gaussian broadening at Lorentzian FWHM of 0.0033 Å⁻¹ in Bi-2212) and spatial resolution at the same time. They have installed an optical monitoring system (spatial resolution ~14 μ m) for sample position adjustments. Based on the results from the μ -Laser ARPES system, they have found the linewidths of ARPES spectra can be drastically improved depending on the

measurement positions even for layered samples having a good cleavage plane and a seemingly well cleaved surface. In 2022, a joint research agreement was signed between HiSOR and QST (National Institute for Quantum Science and Technology), and the main chamber of µ-Laser ARPES was relocated to NanoTerasu, and the laser light source has been moved to BL-1.

So far, the μ -Laser ARPES system has been successfully used to investigate the evaluation of the electronic structure by doping an impurity into the antiferromagnetic material, $Mn_{1-x}Ge_xBi_2Te_4$ [2023-16], the observation of Dirac gap at the selected surface on the half-magnetic topological insulator with magnetization [2021-28], and other projects of topological materials with antiferromagnetism [2021-27, 29, 30, (16), 2022-13, 16, 19].

Evaluation

The rotation of the BL-1 main chamber around the light incidence allows for a unique setup where the degree of linear polarization remains at 100% all the time. Such a polarization dependent ARPES measurement enables users to disentangle multi-band system based on the dipole selection rule [2022-2]. Furthermore, this system has been proven useful to extract orbital textures by continuously rotating the incident electric-field vector with respect to the detection plane. The dramatically decreased beam spot size, new nano stage and new analyzer enables users to perform the most precise measurements. These developments also lead to save the measurement time, too.

The high-resolution variably polarized low-energy photons from the APPLE-II undulator at BL-9A, in combination with the available offline sources, provide an excellent environment to investigate fine details in the electronic structure near the Fermi level. The installation of the fully motorized 6-axes goniometer and the control software allows high-quality ARPES measurement in momentum space. In addition, the new analyzer with a wide detector angle (ultimately ± 30 deg, presently operating at ± 19 deg) enables users to cover significant ranges of k-space, which is more challenging at low photon-energy. The electrodes installed in the manipulator have been developed to do the operando measurement and this development leads to exciting opportunities for researchers from the field of application, such as devices.

The recently commissioned μ -Laser ARPES machine has proven to be a highly competitive setup and has gotten much attention from different groups inside and outside of Japan for its attractive combination of spatial, angular, and energy resolution.

Perspective

The experience gained from past and future upgrades of the three machines will be transferred to the beamlines of HiSOR-II. It is expected that orders of magnitude more efficient ARPES measurements and/or ARPES with improved spatial resolution of $\sim 1 \mu m$ will be possible at the new synchrotron ring. At HiSOR-II, precise and detailed investigations of the electronic structure would be performed which are indispensable to further fundamental understanding of various transport and magnetic properties of solids.

Keeping in mind the current trend of community demands, as well as the future upgrade of the synchrotron radiation towards a low emittance source, it is important to focus on improvements shown below. To begin, based on the impressive results from the ARPES system of BL-1, it is of crucial importance to reduce the

spot size from its current size, ~50 (H) μ m × ~40 (V) μ m, to at least below 20-30 μ m to increase the surface selectivity as well as the angular resolution and maintain international competitiveness.

A future upgrade of such a deflector type analyzer to install a 3D VLEED-type spin detector should also be considered. This would lead to a unique endstation at BL-1, which enables users to perform various experiments in the high spatial and angular resolutions with the surface and k_z sensitive excitation energies, combined with the resolution of the spin (VLEED) and ultimate resolution of orbital textures. The latter is being possible by the rotatable analyzer system, which allows to keep 100% purity of polarization between p- and s-polarizations a feature setting apart BL-1 from other ARPES beamlines around the world.

At BL-9A the reduction of the beam spot-size is even more critical than at BL-1 since the present spot size at 9A is at present much worse and is far behind other beamlines around the worlds. A high magnification ellipsoidal mirror and spatial filter to the main chamber is the highest priority, which can reduce the beam size down to a more competitive scale of ~100 μ m (H) × 40 μ m (V). This upgrade will allow the measurements of smaller domain samples or rough cleaved 3-dimensional sample surfaces, though still not near the state-of-the-art. Another demand from many users is the addition of an automated photon energy control system that changes the monochromator and undulator gap automatically. This, together with the 6-axes goniometer, would allow users to map the 3-dimensional momentum space in a convenient fashion.

Finally, to advance the capabilities to measure at low temperatures with very high energy, angular, and spatial resolutions, it is necessary to improve the design of the manipulator to reduce the residual magnetic fields in the chamber and improve the thermal radiation shields to reduce mechanical vibrations. To that end a low-vibration coupling to the cryo-shield should be installed and crucial parts of the manipulator exchanged with non-magnetic materials. In addition, the suggested plan to standardize the design of the transferred sample holder (Omicron type) for photoemission beamlines (BL-1, 7, BL-9A, 9B) is strongly encouraged.

In the present status, the μ -Laser ARPES machine is highly competitive and allows to produce state-of-theart results. To stay ahead, it is recommended to extend its capability to access ultra-low temperatures ($T \sim 2$ -3 K) in order to improve the energy resolution. One of the options is an installation of a low-vibration cryoshieled in combination with a new manipulator. It has been shown that such a setup can achieve temperatures below 3 K while retaining the rotational degrees of freedom [M. Hoesch *et al.*, Rev. Sci. Instrum. **88**, 013106 (2017)]. The laser source is now installed at BL-1, and the combination with the laser, synchrotron radiation, and the spin detector will open a new comprehensive study.

1-2. Spin structure analysis (BL-9B, laser spin-ARPES)

Current Status

This research division conducts research on quantum spin physical properties of materials by spin- and angleresolved photoelectron spectroscopy. So far, the staff of HiSOR have developed and been improving spinand angle-resolved photoemission spectroscopy (spin-resolved ARPES) endstation equipped with a very low energy electron diffraction (VLEED) type spin polarimeter. Since the efficiency of VLEED polarimeter is about 100 times higher than the conventional Mott spin detector, higher resolution measurement ($\Delta E \le 10$ meV, $\Delta k = 1 \times 10^{-2} \text{ Å}^{-1}$ @ hv = 21 eV) in shorter measurement time has been realized [T. Okuda *et al.*, Rev. Sci. Instrum. <u>87</u>, 103302, (2011).]. By using two VLEED spin polarimeters, that were set orthogonally to each other, enable complete determination of three-dimensional spin vectors (S_x, S_y, S_z) [Okuda *et al.*, J. Electron Spectrosc. Relat. Phenom., <u>201</u> 23 (2015).] Also, for accurate Fermi surface measurement, a high precision tunable temperature (~20 K-470 K) 6-axes goniometer is available. Recently, toward the spin-ARPES measurement in operando condition, the manipulator head was remodeled and the specially designed sample holder with multi-electrodes can be used now. In addition, for the experiment requiring very low temperature condition the other manipulator for low temperature measurement (~6 K) is also now available.

The endstation is located at one of the two undulator beamlines in HiSOR where any kinds of light polarization (left / right circular polarized / horizontal / vertical polarized) by the APPLE II type undulator is available. The available photon energy of the beamline is hv = 16 to 100 eV. (100-300 eV is also available but only for low energy resolution measurement) Although the beam size was relatively large, 3 mm (H) ×1 mm (V), new capillary type spheroidal mirror was installed in 2020 and the beam size is reduced about 1/10 [500 μ m (H) × 100 μ m (V)]. In addition, the x-y-z stage of the manipulator was also renewed to the high precision type with the positioning accuracy of about 1 μ m.

To make experiments more user-friendly and convenient, the grating exchange and the change of the slits are motorized in 2023 as part of DX promotion that will be also helpful for the remote operating experiment from the outside of the facility.

In addition to the SR beamline BL-9B, a new spin-ARPES system using 6 eV Ti:S laser has been developed for the purposes of further expansion of collaborative research and the R&D of use of the 3rd generation light source in the future. Very high energy and momentum resolutions ($\Delta E \sim 5.5$ meV and $\Delta k \sim 0.009 \text{Å}^{-1}$) have been realized. By utilizing laser light, not only the improvement of energy and momentum resolution, but the small beam spot size can be realized which makes the research with micron size samples, samples with multiple domains and microscopic measurement are possible. As a result, microscopic measurements with $\sim 5 \mu m$ spatial resolution are now available. For the ARPES measurement with high spatial resolution the electron analyzer with electron deflector (Scienta-Omicron DA-30) that enables to do Fermi surface mapping or angle resolved measurement without rotating samples, and the high precision x-y-z stage ($\sim 1\mu m$) with encoder with cryogenic manipulator (~ 10 K) are installed at the laser-SARPES station. In addition to the high energy, momentum and spatial resolutions, variable polarization properties of laser light must be also useful to study detailed polarization dependence in spin-ARPES measurement.

In addition to these spin-ARPES endstations, a multi-channel spin detector that can improve the efficiency of spin-detection more than 1000 times higher than the present system is now under construction. Although the magnetic deflector was initially adopted in the design, it was remodeled to a simpler style without using the magnetic deflector. In order to accelerate the development, we hired a new assistant professor for this project in 2023. In parallel, we are exploring new target materials for the spin detector which make it possible to detect out-of-plane spin polarization in the multichannel spin detector. As a potential target material FeCo film on Rh(001) surface is studied recently and the performance test is now in progress.

Because of the high performance of the end-station about 157 proposals (about half (71) of them is from

abroad) have been submitted in these 6 years and published 54 papers (13 Top 10 % or higher papers (24 % of total publications), 20 papers in high impact factor journals (37 % of total publications)). Some of the representative publications are follows.

The first experimental evidence of topological Kondo insulator on $SmB_6(111)$ surface [Nat. Commun. 10, 2298 (2019).30 citations], experimental evidence of the Weyl semimetal on the Heusler alloy Co₂MnGa [Commun. Mater. 1, 89 (2020). Top 7% papers, 50 citations], the first experimental evidence of hedge hog spin texture of chiral crystal Te, [Phys. Rev. Lett. 124, 136404 (2020). Top 3% papers, 73 citations], the investigation of the surface state of MnBi₂Te₄ [Phys. Rev. X 10, 031013 (2020). 4% 71 citations] and so on (1 Top 1%, 1 Top 5% and 2 top 6% papers).

Evaluation

Equipped with a very-low-energy-electron-diffraction (VLEED) spin detector, that was developed in-house with an order-of-magnitude-higher efficiency than a conventional high-energy Mott spin detector, and elliptically-polarized undulator synchrotron radiation in a very efficient photon energy range, HiSOR has been one of the most active and competitive centers for spin-resolved ARPES (S-ARPES) research in the world. Its high-level activity has been well proved by the excellent publications during the last decade, which have made important contributions to the progress of the research on topological materials and 2D materials with an active spin degree of freedom.

In his talk Dr. Miyamoto gave a status report of this facility. The VLEED spin-resolved ARPES system has demonstrated an energy resolution of $\Delta E \le 10$ meV, an angular resolution of 0.4° and the capability of 3D spin vector analysis, which are among the highest resolutions reached in spin-resolved ARPES in the world and enables precise spin-resolved measurements that require high energy and angular resolutions.

The versatile sample facilities permit the preparation of a variety of samples efficiently, which was updated with in-operando measurements and lower temperature measurements down to 6 K.

The system was further upgraded by reducing the beam size on the spot by 1/10 (500-micron scale) with a capillary mirror and equipped with high-precision x-y-z sample motion. This will be important for various exfoliated 2D materials and in-operando measurements.

The IRC also heard about the construction of an extra off-line spin-ARPES system using 6-eV laser, which provide higher energy and momentum resolution in a different photon energy range. This system can provide a much higher spatial resolution of 5 micron. The IRC agree that this system is a powerful complement to the existing spin-ARPES beamline facility in various ways.

The IRC is impressed by the continued upgrade of the system and the continued production of high-level research results and publication by the internal group, domestic users and international users.

The IRC also find that the on-going development of the VLEED spin detector system utilizing multi-channel spin detector would be another important contribution of HiSOR to the world community when it is successfully constructed.

The scientific highlights of spin-ARPES beamline are impressive and competitive, covering updated topics such as ferromagnetic Weyl semimetals and chiral crystals. However, since the overall research activity for finding new topological materials is gradually shrinking world wide, a long-term strategy for spin-ARPES activity has to be reconsidered for the next phase.

Perspective

The recent boom in spintronics and topological insulators research is raising demands for spin-resolved ARPES measurements. Given the global scarcity of spin-resolved ARPES instruments in operation, HiSOR can help to meet the demand by operating both systems, i.e. systems at SR beamline and with a laser source, in its possession, and thus play a prominent role in this research field. The demand is especially high for spin-resolved ARPES measurements using high-brilliance energy tunable synchrotron radiation sources. Since the spin-polarized states on topological insulators are surface states, one can in principle observe the states with any photon energies. However, the spin-polarized states of Weyl semimetals, altermagnets etc. are located at the specific area in the 3D k-space. Therefore, not only high energy and angular resolutions but the possibility to tune the photon energy is crucial. Thus, although the new laser spin-ARPES system must be helpful the use of synchrotron radiation is essential if the characteristics of the high-resolution spin-ARPES systems are to be exploited to the fullest extent. Currently, companies like VG Scienta and SPECS are bringing commercial instruments on the market, but the development of the VLEED type spin detector and also multichannel spin detector at HiSOR will keep this facility ahead of the field.

Staff at HiSOR have long-term experience with designing and operating spin-resolved photoemission experiments, the institution is thus in an excellent position to develop a "multichannel spin detector". This would represent one of the world's most ingenious measurement systems for spin-resolved ARPES to dramatically enhance the energy and angle resolution, and potentially to introduce the possibility of ultrafast temporal resolution.

It is strongly desired that HiSOR engages in all these efforts in the future to enhance its capabilities and create the world's finest environment for the most advanced spin-resolved ARPES experiments, make synchrotron radiation available at any time, and provide a stable supply of user beam time. However, ultimately, the 28-year-old synchrotron radiation source itself must be upgraded in the near future. In addition to the problem of the shortage of beam time, it is desirable to be able to use a more focused, high-quality synchrotron radiation beam in order to fully utilize the world's highest-level spin ARPES technology cultivated at HiSOR.

1-3. Nanomaterial analysis (BL-14)

Current Status

The beamline BL-14 has been utilized for several types of absorption spectroscopy experiments in a soft Xray region between 400 and 1200eV, including the main technique of soft X-ray magnetic circular dichroism (XMCD) measurements. The targets of the XMCD experiments are magnetic nanostructured materials grown on kinds of substrates, whose samples are fabricated by epitaxial method. The XMCD experimental system consists of an XMCD measurement chamber and a suite of interconnected UHV chambers for the in-situ sample fabrication and analyses (LEED, AES, STM). In the sample fabrication, magnetic ultrathin films and multilayers are monoatomically grown with sub-monolayer precision, using real-time RHEED oscillation monitoring. Fabricated magnetic nanostructures are quickly transferred into the measurement chamber in the beamline, and their native magnetic properties are investigated without influence of oxidation or surface pollution. The XMCD measurements are carried out with circularly polarized component ($P_c = 0.7$) of SR beams in total electron method, where a set of permanent magnets (1.1 T) and an electromagnet (0.3 T) are available for magnetizing samples, and the temperature range is between liquid nitrogen and room temperature.

Recently, the group members of BL-14 have started development of a soft X-ray reflectometer that is compatible with low vacuum or He atmospheric environment, aims at magnetic and structural evaluation for practical multilayers and films. Assembling of the reflectometer and control tests of a motorized θ -2 θ goniometer have been finished. Successful installation of the apparatus to BL-14 has been achieved with good compatibility between vacuum separation and influx of soft X-ray from UHV beamline, by utilizing silicon nitride membrane.

Another upgrade project under development is a compact sample fabrication system that has portability among beamlines in HiSOR facility. The movable system is expected to enhance joint projects with multiple experimental methods across the beamlines, changing the current situation that only XAS/XMCD is available for nanomaterial samples fabricated locally at BL-14.

The members of BL-14 have also made a strong effort at computational method aids material studies at SR beamlines. Successful work on spintronic interfaces was achieved based on combination study between beamline experiments and first-principle electronic structure calculations for ultrathin magnetic multilayers. At present, they are trying computational analysis on interlayer magnetic interaction observed in ultrathin structures of ferromagnetic tunnel junction.

Evaluation

The status and performance of the soft x-ray bending magnet beamline BL14 and the XMCD endstation has been presented at HISOR symposium. The talk by Dr. Masahiro Sawada talk (BL14 staff), and the additional user presentation by Dr. Naoyuki Maejima (from Rikkyo University and Institute of Molecular Science presentation) highlighted the use of XAS and XMCD approaches on the investigation of hybrid 2D/FM interfaces and NixP/Fe2P bilayers, evidencing excellent performance and the capability to complete cutting edge nanomagnetism studies. In the light of the publication and proposal record provided over the last 5 years (2018-2023), the beamline and XMCD endstation have sucesfully accomplished remarkable results over the the period, with around 10-15 manuscripts in good quality peer review journals (plus some recent excellent results pending publication in judgment of the results shown in the 28th HiSOR meeting).

Taking into account the limited operation of the facility and of the endstation (around 5 experiments per year), the covid shutdown and the very limited staffing (essentially one permanent scientist, Dr. Masahiro Sawada, and intermittently one young researcher PhD or postdoc), the results achieved and their quality deserve compliments. The provided documentation also demonstrates the endstation has provided service to a broad internal and external community, including various researchers and young studends at Hiroshima University; external users in Japan (CEMS/Riken center, Ritsumeikan University, Rikkyo University, Kumamoto

University), and overseas research institutions like IOFFE institute in Russia, or the Indian Institute of Technology in India.

Besides, a novel endstation for soft x-ray reflectometry is under installation and appears to be large progress and almost ready for commissioning (no measurements were yet shown). This effort is commendable and well received: such an instrument enables complementary approaches to the XAS, XMCD techniques and broadens the beamline usage, offering novel opportunities and widens the portfolio of techniques at the service of the HiSOR community. Additionally, work has been done in setting-up a MBE portable set-up that can be docked at various endstations at HiSOR facility. Again, this is remarkable work and should open novel opportunities for studies at for example ARPES instruments, and/or multimodal studies combining x-ray experiments at more than one instrument, in example XMCD and ARPES.

Looking back at the recommendations already made by the International Review Committee back in 2018 (see related 2018 report), one finds: i) extension of the cryogenic temperatures below liquid nitrogen (i.e. liquid Helium); ii) implementation of a larger (high) field magnet, either a superconducting magnet or a high field magnet; iii) addition of a fluorescence sensor for measurements on insulating samples. Such recommendations still apply now in 2024, and will be the highest priority recommendations. Taking into account eventual budget limitations and the present situation with liquid Helium (unless HiSOR has a secured liquid Helium supply), we refine in the following those recommendations, to hopefully increase the likelihood that some of them could actually happen within the next upgrade. Furthermore, in an investment is done onto a higher performance synchrotron source, this would only make sense if this is leveraged with corresponding enhanced endstations, in particular the XMCD endstation, but also possibly the reflectometry endstation.

Regarding working at liquid Helium temperatures, i.e. 4 Kelvin, cryogen-free solutions have evolved notably in the last years and have a cost that can be quickly recovered from savings in liquid Helium, whose price (in Europe at least) has increased by a factor of ×3 or more, and where not only the price but just having a guaranteed supply is a problem. Among those solutions, two types might be worth evaluating: a) cold gas recirculation solutions (such as the *stinger* solution from Coldedge company), in which a close cycle circulation of Helium gas goes through a cryocooler head (typically a GM type with significant vibration and a 4K stage), and then compressed to high pressure and circulated through a kind of helium transfer line onto the cryostat coldfinger, and then is collected by an outer shield on the line back to the compressor for heat dissipation. Such a solution might have a vibration signature, but the transfer line makes for some decoupling; b) a recondensing setup (for example those offered by Janis company, now Lakeshore), where liquid Helium is used but the gas coming out of the cryostat go onto a Dewar recipient equipped with cryocooler heads in order to recondense the gas back to liquid). Such system might present less vibration issues. Such cryocooler systems (typically Sumitomo) have a 14,000 to 20,000 hours maintenance and besides electricity cost are very robust and efficient.

In what respect to enhancing magnetic field capabilities, there are some relevant remarks that appear relevant to complete previous suggestions: presently BL14 is a bending magnet and has not implemented a capability to switch the x-ray polarization. This is very important to keep on mind. This is "solved" because a relatively fast switching of the magnetic field (0.3T) in few seconds (5secs) is possible with the current electromagnet.

With this in mind, is clear that a high field SC electromagnet, with typically say 6T and a 2T/min ramp (as such used nowadays at XMCD beamlines in ALBA, Diamond, SLS or Soleil) will make XMCD very inefficient. However, an electromagnet with an extremely fast ramp seems advantageous: a 2T electromagnet feed by a 200 Amps/s or 400 Amps/s power supply can switch magnetic field in 1 to 2 seconds. This would match a XAS, XMCD measurement in which because the low flux of the bending magnet, one is integrating a few seconds per point at a given photon energy, switching the field, then measuring the next energy, and so on, i.e. measuring spectra on a "step by step" motion with field switching at every step. Such an electromagnet and power supply may range on the 100,000 USD range (see for example GMW company solutions, Lakeshore or Caylar solutions), and would be very similar but significantly higher performance than the current electromagnet.

Still, considering options for polarization switching is worthy. It is maybe interesting to mention that in various facilities (ALS, ALBA, maybe others) there are test exploring the possibility to insert special devices to change the trajectories of the electron beam in order to obtain very fast modulation of the x-ray polarization at a bending magnet. A more classical approach used in various full field soft x-ray transmission microscopes (ALS, ALBA) is to have a movable slit on the source to select photons emitted above or below the dipole plane to have positive or negative x-ray helicities; an equivalent but different solution is implemented in BESSY where a mirror is moved in order to let photons emitted above or below plane to pass through a slit downstream. In the event of an upgrade of the machine, the possibility for the XMCD endstation to be placed at an undulator should be considered.

Now regarding the recommendation of a fluorescence detector, is worth discussing briefly some of the options: a good an inexpensive option is a photodiode (could be a Si or GaAsP photodiode with relatively good radiation resistance and low dark current, and a good area) or avalanche photodiode or a channeltron, which should be placed as close as possible to the sample. Simple and low-cost diodes from Hamamatsu work reasonably well (a thin foil to avoid electrons might be take into consideration). A more fancy and costly option is a Silicon drift detector (Rayspec, Vortex, others) which will enable partial fluorescence yield as it has a certain energy resolution (around 125 eVs).

Besides that, there are other detection schemes that do not seem implemented and maybe equally or even better than fluorescence when possible: transmission and x-ray excited luminescence (which is essentially a transmission like approach). A simple diode collecting transmitted light, or the optical light excited by x-rays on luminescent substrates (sapphire, MgO, ...many other oxide substrates) enable detection modes that are bulk sensitive (hence complementary to TEY), and that address the issues of insulating samples with fluctuating backgrounds or operando experiments with applied currents or voltages where leakage onto the TEY detection introduces noise.

It is too early to provide recommendations on the soft x-ray reflectometry endstation, but addition for a 2D detector (CCD, sCMOS) enabling off-plane resonant scattering (transmission, gisaxs, but in soft x ray range even grazing angle is not so relevant or interesting) is worth start thinking about. This would become even more relevant if HiSOR is updated to a synchrotron source with enhanced coherence.

A last advice if HiSOR wants to increase the productivity of the beamline and XMCD endstation, which will

be even more relevant in the context of an eventual machine upgrade is to increase beamline staff, and balance properly faster turnover experiments with more complex experiments. If internal budget does not allow, this should be explored by fostering participation of scientist on national research grants as PI, in collaboration with other researchers, in order to have shared PhDs and postdocs. This if properly articulated, could and should be a career step forward for the beamline scientist. In this context, 2D materials could be a strategic opportunity for XAS, XMCD studies: the ARPES instruments are already working on bidimensional materials at the forefront of research in van der Waals and magnetic topological, Dirac materials, so an enhanced XMCD endstation could proof very interesting and complementary to the relevant on-going ARPES work. This could help boost the impact factor of BL14 publications as well. A beamline attached or moveable glove box, to allow experiments in air sensitive few layer vdW materials (bulk materials can be cleaved in-situ) might be also worth considering, either at the level of BL14 or movable between HiSOR instruments.

The beamline upgrades should take into account the possibility of an updated HiSOR machine, so any significant investment of money and resources is also useful and well adapted to such eventual novel scenario and the corresponding beamline or endstations conditions (which may differ from present).

Perspective

The concept to build end-stations at SR beamlines to achieve sample synthesis and fine analysis simultaneously, is one of the important ideas for material science, which is followed by the continuous efforts at BL-14 in the limited research field of magnetic nanostructures. The specialized studies should be continued if they are aimed at technological applications or something scientifically significant. However, efforts to exploit potential needs are also important, even if the old beamline has several limitations of beam quality. Wide range control of experimental conditions corresponds to broaden scientific scope, easy-to-use environment for users apart from SR community, and diversification strategy are recommended. Expansion of temperature and magnetic field range may be a pressing issue for the XMCD system, and user-friendly measurement with automatization may be effective for SR beginners. Advancement of multiple uses of soft X-ray beam at BL-14 and multiple measurements beyond the beamline should steadily be considered positively.

1-4. Circular dichroism of biomaterials (BL-12)

Current status

Circular dichroism (CD) spectroscopy is capable of measuring the difference in absorption of left- and rightcircularly polarized light, making it a valuable tool for analyzing the structural characteristics of molecules such as natural products, proteins, polysaccharides, and nucleic acids. By combining CD data with other experimental and theoretical techniques, a more comprehensive understanding of structures, properties, and functions of molecules can be achieved. However, the conventional CD is limited to the far-UV and near-UV regions, restricting its usefulness. The vacuum-ultraviolet (VUV) region, which extends below 190 nm, can be more sensitivity covered when using a synchrotron radiation (SR) as a high intense light source. Hence, the utilization of SR light source has enhanced the usefulness of CD spectroscopy by extending the wavelength region of CD the spectrum into the VUV region and enabling precise CD measurements. This advancement has allowed researchers to uncover new and detailed structural insights, such as the steric structures of large biomolecules like proteins and polysaccharides, and the absolute configuration of natural products with high-energy chromophores such as hydroxy group, acetal bond, and allene moiety.

VUVCD is particularly effective in determining the secondary structure of biomolecules, such as α -helices and β -strands in proteins. It is well-suited for various types of biomolecules with high molecular weight, temperature-dependent studies, and studies in different solvent conditions, including those involving membranes. Therefore, it can be used in conjunction with other structural biology techniques such as X-ray crystallography, small angle X-ray scattering, and NMR spectroscopy.

In 1997, a vacuum-ultraviolet circular dichroism (VUVCD) spectrophotometer was constructed at BL-15 at the Hiroshima Synchrotron Radiation Center (HiSOR) using a small-scale SR source (0.7 GeV). This spectrophotometer enabled the measurement of CD spectra in the range of 310-140 nm and has been successfully applied in the structural analyses of various biomolecules. Subsequently, the spectrophotometer was relocated to BL-12 with a Wadsworth normal incident monochromator, providing a photon flux of photons/sec, thereby enhancing the precision and speed of CD measurements.

Through continuous upgrades in measurement and analytical techniques, as well as collaborative research efforts with scientists worldwide, HiSOR has played a pivotal in VUVCD-based structural analyses of biomolecules. Internationally, VUVCD or SRCD beamlines are operated in notable SR facilities such as the Aarhus Storage Ring (ISA) in Denmark, Diamond Light Source in the United Kingdom, Brazilian Synchrotron Light Laboratory (LNLS) in Brazil, and Synchrotron SOLEIL in France.

The HiSOR VUVCD spectrophotometer utilizes an optical system, consisting of a combination of polarizer and photo-elastic modulator to generate left- and right-circular polarization at 50 kHz, a detection system with two photomultipliers, and signal processing system with a lock-in amplifier. A variable temperature system, equipped with a peltier element, enables the measurement of CD spectra of biomolecules within the temperature range of -20 to 100°C with an accuracy of ± 0.1 °C. This temperature control system underwent upgrades based on feedback from international committee reviewers of HiSOR which was held in March 2018.

Additionally, a Schwarzschild focus mirror was installed to reduce the size of the SR light, enabling a significant reduction in sample volume for measurements. This enhancement facilities the analysis of rare samples, such as proteins from human cells. The focusing system was further extended to high throughput measurements using a multiplate optical cell, which can accommodate 16 different samples simultaneously.

Another significant upgrade was the development of a time-resolved measurement (TR) system, employing a microfluidic mixing device dedicated in the dynamic observation of protein structures during membrane interaction. This device, integrated into the VUVCD instrument, allows for the determination of kinetic parameters and identification of intermediates in membrane interaction processes involving membrane-bound proteins. The TR technology developed serves as a convenient tool for obtaining various dynamic parameters related to the dependence of lipid / protein ratio, types of bio-membranes, temperature, and pH, which are crucial for elucidating the expression mechanism of biological functions of various membrane-bound proteins.

Furthermore, efforts are underway to develop a vertical CD device with microscopic functions to enable structural research of biomolecules in solid and semi-solid states. SR light is directed vertically by the MgF₂ coated Al mirror set up between the VUVCD instrument and BL-12, where it is converted into left- and right-circularly polarized light by a combination of polarizer and photo-elastic modulator. The modulated light passes through the sample after the condensing lens, and reaches the detector. By controlling the sample position with an automatic XY stage, microscopic CD measurements become feasible. Presently, this vertical CD instrument is applicable only to samples in the liquid state, but system for measuring solid and semi-solid states is under construction.

Evaluation

BL-12 represented by Dr. Koichi Matsuo has been and still is proof of a well functioning beamline. The field of interest includes the biophysical and structural biology. BL-12 offers a continuous operation during the working hours, allowing circular (CD) and linear (LD) dichroism as well as absorption spectroscopy. The vacuum-ultraviolet (VUV) CD spectrophotometer at BL-12 extends the CD spectra to the VUV region down to 170 nm for aqueous solutions and to 140nm for films. Low noise, low sample consumption (microliter range) and quick data acquisition provide structural information, which is unattainable with conventional CD instruments. Applications include membrane proteins, saccharides, nucleotides and disordered protein structure analysis, as well as protein-protein interactions, protein-nucleotide interactions and protein lipid interactions. Other activities of great value complementing these spectroscopic measurements are principal component analysis, neural networks, molecular dynamics and bioinformatics. (Peer reviewed publications and citation numbers, are proof of reliability)

The group of Dr. K. Matsuo has been joined by a Dr. Mohamed Ibrahim (assistant professor), who has been a real asset considering that he has already published! Also, like previously (2018) stated, the recruitment and of new beamline-staff increases the possibilities for exploring the beamline as well as accommodating and helping users and recruiting students more efficiently. I have been impressed by the present output 17 papers and usage of the VUV-CD. Keeping in mind that there has certainly been an interruption during the COVID pandemic and its restrictions.

Developments in place such as the vertical acquisition dispositive including a Schwartzschild focusing lens, microfluidic devices controlling the protein membrane dynamics (time resolved), as well as multi well plate reading and last but not least a Cuette flow cell for analysis of macromolecular orientation within liquid samples are new methodologies and devices, which add up to the existing equipment such as the sublimation chamber, for thin film preparations of organic chiral molecules, and microfluidic continuous flow and stopped flow set-ups. Also the installation of an IR spectrometer in the laboratory using the attenuated total reflection (ATR) and Fourier transform infrared (FTIR) spectroscopy as sampling techniques, allows investigations of samples in either solid or liquid state which are spectroscopies very much complementary to the VUVCD.

The installation of an automated temperature stepping mode (-20°C to 100°C) for CD and absorption spectroscopy is now in place and allows access to thermodynamics and thermal-stabilities assays of biological macromolecules in solution. Further developments which have been discussed with the beamline staff include the development and implementation of a dedicated linear dichroism.

The latest addition of the ChiroPoly Probe system for real-time monitoring of CD signals from free radical polymerisation processes will be a great asset also to attract scientist from chemistry backgrounds in addition to life scientists.

The committee strongly supports the investigations into these novel developments to pave the way for a new HISOR light source. VUVCD will be an essential part of the new beamlines in the potential upgrade to HISOR-II and I strongly encourage the management to sustain financial support as well as keeping and maintaining the staff of one beamline manager one beamline scientist and one post-doc in addition to 2-3 PhD students. I would also like to recommend the application to a higher funding body in Europe and Japan to support international exchanges with other CD beamlines in Europe (ISA, DIAMOND, SOLEIL) and the novel LNLS in Brasil. Exchange of students, validation of procedures for calibration as well as scientific exploits, such as the construction of an international reference dataset for biomacromolecules should be covered by a solid long-term grant.

In a conclusion, important improvements over the past 6 years have been made. BL-12 remains and is a very productive tool for structural biology, glyco-biology and in a more general way for chrial macro-molecular studies where other techniques fail due to size of the molecules or their complicated flexible.

Perspective

The HiSOR VUVCD has contributed significantly to the structural analysis of biomolecules and implemented a unique experimental and computational system, resulting in an increase in the usage of external users. To sustain the attractiveness of this unique instrument in the chiral research fields, ongoing enhancements to the existing instrument are crucial, and continuous efforts should be dedicated to the advancement of a next-generation VUVCD device.

At HiSOR-VUVCD, three projects are currently underway. Firstly, there an ongoing project to improve vertical CD spectroscopy, enabling the structural analysis of biomolecules in solid and semi-solid samples. Secondly, there is the development of a new beamline which dedicated to measurement linear dichroism spectra of oriented biomolecules using the Couette flow cell, which is suitable for small sample volumes. Thirdly, there is the development of a new ChiroPoly Probe system for real-time monitoring of free radical polymerization using VUVCD technology. Meanwhile, dedicated staff are indispensable for user support, equipment improvement, and outreach activities, ensuring a stable operating environment.

The VUVCD beamline holds significant value for both the HiSOR and life sciences communities, playing a crucial role in fulfilling the objectives of the "Joint Usage/Research Center" and facilitating structural analyses of biomolecules. Plans for continuous improvements to the existing beamline and the development of a next-generation VUVCD instrument are essential for meeting the important requests of domestic and international users, thus maintaining a pivotal role in the life sciences at HiSOR.

1-5. Light source accelerators and insertion devices

Current Status

The light source accelerator system at the Hiroshima Synchrotron Radiation Center (HSRC) consists of a 150 MeV injector microtron, a beam transport line, and a racetrack type storage ring. This system is called HiSOR (Hiroshima Synchrotron Orbital Radiation). The circumference of this ring is 22 m, and the bending radius is 0.87 m in the normal conducting bending magnet with high magnetic field of 2.7 T. Stored electron beam energy is 700 MeV, and synchrotron radiation having the critical energy of 873 eV from two 180-degree bending magnets can be extracted through 14 photon beam ports. There are two straight sections in the ring and two undulators are installed there. One is a linear undulator (2.4 m long, 57 mm period). Another is the variable polarization undulator (1.8 m long, 78 mm period). They provide high brightness VUV radiation to the photoelectron spectroscopy beamlines.

HiSOR has been successfully operated since 1996. Operation hours exceed 2,000 hours in each year, and users' operation hours are about 1,600 hours. The machine is running 11 hours a day (with 2 injections) and 4 days a week. Monday is reserved for machine tunings, machine studies and maintenances. The machine startup in the morning takes 30 minutes. It is almost possible to make a turn-key operation for normal use. The beam is about 350 mA just after the energy ramping and about almost a half just before the re-injection. Although the 24-hour operation has been requested from users, it is difficult to realize it due to the lack of manpower.

During the previous evaluation in the early 2010s, we reported a significant issue regarding the leakage of cooling water from the synchrotron radiation absorbers into the ultra-high vacuum chamber in the dipole magnets. Unfortunately, this issue has recurred this year, approximately 10 years later. The absorber was temporally repaired to recover the accelerator as soon as possible. It should be replaced with new one, whose mechanical design would be reconsidered, in the nearest future.

We evaluated the necessity and urgency of the aging-related issues of the accelerator components, and are replacing those one by one. We are currently promoting the replacement of the pulsed electromagnet power supply for beam injection, which would utilize semiconductor devises instead of a cyclotron for the switching element. The replacement would be in the summer of 2025.

The control systems of the undulators are being upgraded. In FY2023, it was improved within the existing accelerator control system framework, so that they could be controlled from the beamline control system. However, the response speed is not sufficiently high as requested by the users. In addition, the accuracy of the closed orbit correction is not sufficiently high and the experiments in the other beamlines are perturbed. To address these issues, we are going to install a totally new control system which is equivalent to that used in UVSOR.

Since the upgrade of the present HiSOR storage ring is not realistic because it is designed so compact and has no redundancy to introduce new ideas or apparatus. Therefore, for the future plan, a new storage ring HiSOR-II has been designed. We are preparing several plans to flexibly adapt to the situations of the synchrotron radiation science in our country and also of Hiroshima university. The beam energy of HiSOR-II would be 500 MeV, which is appropriate to produce high brightness VUV radiation with a compact ring.

We have designed a ring with a circumference of approximately 50 m but also are designing a more compact one with a circumference below 40 m. Although construction of a full energy injector is included in the plan, we are also considering usage of the current HiSOR storage ring as a full-energy injector for HiSOR-II.

To prepare for future plans, we are conducting researches on new accelerator technologies, such as new injection scheme using pulse multipole magnets, accelerator control by machine learning and permanentelectric hybrid magnets. These development researches are being conducted in collaboration with KEK-PF, UVSOR, and Nagoya University. This year, the accelerator groups of KEK-PF, UVSOR, Nagoya University and HiSOR have initiated regular monthly information exchange meetings. The collaboration aims not only to advance joint developments of new technologies but also standardization of accelerator components and maintenance parts, all of which would be effective in the reductions of the cost and the manpower for operating and maintaining the present machine and for developing the future accelerators. HiSOR-II would be almost diffraction-limited VUV source. We continue researches on developing new light source technologies in collaboration with UVSOR. Graduate and undergraduate students join some of these development studies described above. A few of them are conducted under the support of KEK's Accelerator Science International Education Program (IINAS-NX).

Evaluation

The IRC (International Review Committee) is impressed by the performance of the HiSOR light source despite its age of 28 years and being operated by a very small accelerator group. Pursuing aging-related issues with high priority and updating the control system are measures which are highly appreciated. Replacement of the presently leaking copper absorber should also be considered for the other dipole as a preventive measure.

The Director of HiSOR explained future storage ring options with a circumference ranging from 40 to 50 m for a diffraction-limited new facility HiSOR-II with six straight sections. The IRC fully agrees that technical improvement of this already very optimized machine is hardly possible and stable operation is becoming more and more difficult, while the research opportunities in physics, chemistry and biology offered by HiSOR are indispensable. Given the time scale for designing, constructing and commissioning a new light source, the IRC strongly recommends that the Hiroshima University decides on future plans for HiSOR as soon as possible and forwards them to the MEXT level.

With the experience of Prof. Katoh and the collaboration with other institutes like KEK, UVSOR and Nagoya University, the design of a new machine is in very good hands. Novel and sustainable technologies like the use of multipole magnets for injection and permanent magnets for the storage ring are under evaluation. Furthermore, the use of superbends (i.e., superconducting magnets instead of conventional storage ring dipoles) is considered to reach shorter wavelengths. As cost-effective alternative, the use of short bending magnets like those, e.g., at the ESRF-EBS storage ring may be evaluated.

To be competitive with other modern facilities, full-energy injection with top-up operation is mandatory. Instead of a new booster synchrotron, the use of the present storage ring as full-energy injector is being considered. While this is a cost-effective option, it would exclude the possibility of using both facilities simultaneously. Also, the integration of extraction kicker elements may not be trivial and the ramping time

would be longer than for an optimized new synchrotron.

Generally, while keeping the budget for construction and operation of a new facility within reasonable limits, the design should be based on user demands and scientific output in order to obtain maybe not the least expensive but an economically optimized solution.

A two-step approach may be considered, (i) investment in a full-energy booster synchrotron for the present and future machine and (ii) funding of a new storage ring. A full-energy booster would shorten the injection time and enable top-up injection, very much favored by the users and adding to thermal stability of the machine. Technical challenges like the present 90-degree bend, which is not suitable for full-energy injection, should be investigated. Optimizing the injection efficiency and keeping the radiation background low during injection would be useful R&D in view of a future storage ring.

Investment in HiSOR-II pays best when that machine is used to full capacity. The present operation time of 1600 hours per year for users may suggest that the demand for such a light source is not very high. In order to avoid such an impression and as requested by the users, HiSOR should make an effort to operate for more hours. The IRC understands that operation time is limited by manpower, but (i) after a last injection in the evening, the machine could be left unattended and/or (ii) the machine could be operated by students with appropriate training, and/or (iii) R&D in automated operation without compromising safety standards should be pursued. These are options that have been successfully practiced at other light sources. Training students as operators has the positive side-effect that more students get interested in master/doctoral work at HiSOR.

If not already the case, HiSOR may apply for a graduate school or some other collaborative research program. In addition to funding of PhD positions and scientific progress, such an activity is prestigious, increases the visibility of the laboratory, and may be advantageous in view of applying for a new facility.

Not only the beamlines but also the accelerator physics group would profit from additional manpower, particularly when preparing a Conceptual Design Report to apply for a new machine. A sound concept for such a machine requires detailed simulations including nonlinear effects and a professional technical layout of accelerator components. The IRC recommends funding for one additional accelerator physicist and at least one more engineer or technician.

Perspective

Concerning the present HiSOR accelerator system, the drastic improvement of the specification is difficult owing to its structure. On the other hand, it is expected to keep the present performance as replacing the aged components systematically. It is even expected to improve the performances such as orbit stabilities or smooth undulator control from beamlines. However, to realize this, the employment of young technical staffs is desired strongly.

About the future plan, new technologies toward sustainability should be introduced. The collaborative R&D's with other facilities is effective and strongly recommended. To realize this, it seems important to promote personal exchanges among the facilities, including engineers. At the phase of making a detailed design, the procedures for the daily maintenance and the long-term operation must be considered.
Appendix

Number of students who earned master's and doctoral degrees using HiSOR

Year	Master degree	Doctoral degree (user from abroad)
2017	5	3 (3)
2018	7	3 (3)
2019	7	5 (4)
2020	5	4 (3)
2021	7	5 (5)
2022	8	7 (4)
2023	11	6 (3)
Total	50	33

Publication List (2017-2023)

*In the list, papers in italics are those that used multiple beamlines and have already been listed on other beamlines.

2017

BL-1

- S. Ishihara, K. Ichiki, K. Abe, T. Matsumoto, K. Mimura, H. Sato, M. Arita, E. F. Schwier, H. Iwasawa, K. Shimada, H. Namatame, M. Taniguchi, T. Zhuang, K. Hiraoka, H. Anzai, "The c-f hybridization effect in the subsurface region of YbInCu₄", J. Electron Spectrosc. Relat. Phenom. 220, 66-68 (2017).: BL-1 / cite 9 / IF= 1.9
- M. D. Watson, A. A. Haghighirad, H. Takita, W. Mansuer, H. Iwasawa, E. F. Schwier, A. Ino, M. Hoesch, "Shifts and splittings of the hole bands in the nematic phase of FeSe", J. Phys. Soc. Jpn. 86, 53703/4p (2017).: BL-1 / cite 23 / international coauthor / IF= 1.5
- 3) T. Komesu, D. Le, I. Tanabe, E. F Schwier, Y. Kojima, M. Zheng, K. Taguchi, K. Miyamoto, T. Okuda, H. Iwasawa, K. Shimada, T. S. Rahman, P. A. Dowben, "Adsorbate doping of MoS₂ and WSe2: the influence of Na and Co", J. Phys.: Condens. Matter 29, 285501/7p (2017).: BL-1 / cite 12 / international coauthor / IF= 2.7
- 4) H. Yamaoka, P. Thunström, N. Tsujii, K. Katoh, Y. Yamamoto, E. F Schwier, K. Shimada, H. Iwasawa, M. Arita, I. Jarrige, N. Hiraoka, H. Ishii, K.-D. Tsuei, J. Mizuki, "Electronic structure of ferromagnetic heavy fermion, YbPdSi, YbPdGe, and YbPtGe studied by photoelectron spectroscopy, x-ray emission spectroscopy, and DFT + DMFT calculations", J. Phys.: Condens. Matter 29, 475502/9p (2017).: BL-1 / cite 5 / international coauthor / IF= 2.7
- 5) H. Iwasawa, K. Shimada, E. F. Schwier, M. Zheng, Y. Kojima, H. Hayashi, J. Jiang, M. Higashiguchi, Y. Aiura, H. Namatame, M. Taniguchi, "Rotatable high-resolution ARPES system for tunable linear-polarization geometry", J. Syn. Rad. 24, 836-841 (2017).: BL-1 / cite 34 / international coauthor / IF= 2.4
- 6) T. Duchoň, M. Aulická, E. F. Schwier, H. Iwasawa, C. Zhao, Y. Xu, K. Veltruská, K. Shimada, V. Matolín, "Covalent versus localized nature of 4f electrons in ceria: Resonant angle-resolved photoemission spectroscopy and density functional theory", Phys. Rev. B 95, 165124/5p (2017).: BL-1 / cite 10 / international coauthor / IF= 3.6

BL-9A

- 7) D. Ootsuki, H. Ishii, K. Kudo, M. Nohara, M. Takahashi, M. Horio, A. Fujimori, T. Yoshida, M. Arita, H. Anzai, H. Namatame, M. Taniguchi, N. L. Saini, T. Mizokawa, "A novel one-dimensional electronic state at IrTe₂ surface", J. Phys. Soc. Jpn. 86, 123704/5p (2017).: BL-9A / cite 5 / international coauthor / IF= 1.5
- M. Z. Yan, H. Q. Huang, K. N. Zhang, E. Y. Wang, W. Yao, K. Deng, G. L. Wan, H. Y. Zhang, M. Arita, H. T. Yang, "Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe₂", Nature Commun. 8, 257/6p (2017).: BL-9A / cite 314 / international coauthor / IF= 17 / Top1
- B. Feng, B. Fu, S. Kasamatsu, S. Ito, P. Cheng, C.-C. Liu, Y. Feng, S. Wu, S. K. Mahatha, P. Sheverdyaeva, P. Moras, M. Arita, O. Sugino, T.-C. Chiang, K. Shimada, K. Miyamoto, T. Okuda, K. Wu, L. Chen, Y. Yao,

I. Matsuda, "Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu₂Si", Nature Commun. **8**, 1007/6p (2017).: BL-9A,BL-9B / cite 213 / international coauthor / IF= 17 / Top1

- 10) S. Wu, K. Sumida, K. Miyamoto, K. Taguchi, T. Yoshikawa, A. Kimura, Y. Ueda, M. Arita, M. Nagao, S. Watauchi, I. Tanaka, T. Okuda, "Direct evidence of hidden local spin polarization in a centrosymmetric superconductor LaO_{0.55}F_{0.45}BiS₂", Nature Commun. 8, 1919/7p (2017).: BL-9B,BL-9A / cite 49 / IF= 17 / Top10
- 11) K. N. Zhang, M. Z. Yan, H. X. Zhang, H. Q. Huang, M. Arita, Z. Sun, W. H. Duan, Y. Wu, S. Y. Zhou, "Experimental evidence for type-II Dirac semimetal in PtSe₂", Phys. Rev. B 96, 125102/6p (2017).: BL-9A / cite 175 / international coauthor / IF= 3.6 / Top1
- 12) D. Song, G. Han, W. Kyung, J. Seo, S. Cho, B. S. Kim, M. Arita, K.Shimada, H. Namatame, M. Taniguchi, Y. Yoshida, H. Eisaki, S. R. Park, C. Kim, "Electron number-based phase diagram of Pr_{1-x}LaCe_xCuO_{4-δ} and possible absence of disparity between electron- and hole-doped cuprate phase diagrams", Phys. Rev. Lett. **118**, 137001/5p (2017).: BL-9A / cite 44 / international coauthor / IF= 8.7 / Top10
- 13) H. Sato, Y. Utsumi, K. Katoh, K. Mimura, S. Ueda, H. Yamaoka, A. Rousuli, M. Arita, K. Umeo, K. Shimada, H. Namatame, M. Taniguchi, "Yb valence state in Yb₅Rh₄Ge₁₀", Phys. Stat. Solidi C 14, 1600164/4p (2017).: BL-9A / cite / IF= -
- 14) H. Anzai, M. Arita, H. Namatame, M. Taniguchi, M. Ishikado, K. Fujita, S. Ishida, S. Uchida, A. Ino, "A new landscape of multiple dispersion kinks in a high-Tc cuprate superconductor", Sci. Rep. 7, 4830/8p (2017).: BL-9A / cite 13 / international coauthor / IF= 4.9

BL-9B

- 15) M. Z. Yan, E. Y. Wang, X. Zhou, G. Q. Zhang, H. Y. Zhang, K. N. Zhang, W. Yao, N. P. Lu, S. Z. Yang, S. L. Wu, T. Yoshikawa, K. Miyamoto, T. Okuda, Y. Wu, P. Yu, W. H. Duan, S. Y. Zhou, "High quality atomically thin PtSe₂ films grown by molecular beam epitaxy", 2D materials 4, 45015 (2017).: BL-9B / cite 143 / international coauthor / IF= 6.2 / Top10
- 16) T. Okuda, "Recent trends in spin-resolved photoelectron spectroscopy", J. Phys.: Condens. Matter 29, 483001 (2017).: BL-9B / cite 25 / IF= 2.7
- 17) T. Hirahara, S. V. Eremeev, T. Shirasawa, Y. Okuyama, T. Kubo, R. Nakanishi, R. Akiyama, A. Takayama, T. Hajiri, S. Ideta, M. Matsunami, K. Sumida, K. Miyamoto, Y. Takagi, K. Tanaka, T. Okuda, T. Yokoyama, S. Kimura, S. Hasegawa, E. V. Chulkov, "Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer", Nano Lett. 17, 3493-3500 (2017).: BL-9B / cite 119 / international coauthor / IF= 11.2 / Top10
- 18) W. Yao, E. Wang, H. Huang, K. Deng, M. Yan, K. Zhang, K. Miyamoto, T. Okuda, L. Li, Y. Wang, H. Gao, C. Liu, W. Duan, S. Zhou, "Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe₂ film", Nature Commun. 8, 14216/6p (2017).: BL-9B / cite 148 / international coauthor / IF= 17 / Top10
- E. Haubold, K. Koepernik, D. Efremov, S. Khim, A. Fedorov, Y. Kushnirenko, J. van den Brink, S. Wurmehl,
 B. Büchner, T. K. Kim, M. Hoesch, K. Sumida, K. Taguchi, T. Yoshikawa, A. Kimura, T. Okuda, S. V. Borisenko, "Experimental realization of type-II Weyl state in noncentrosymmetric TaIrTe₄", Phys. Rev. B 95, 241108(R) (2017).: BL-9B / cite 94 / international coauthor / IF= 3.6 / Top10
 - 9) B. Feng, B. Fu, S. Kasamatsu, S. Ito, P. Cheng, C.-C. Liu, Y. Feng, S. Wu, S. K. Mahatha, P. Sheverdyaeva, P. Moras, M. Arita, O. Sugino, T.-C. Chiang, K. Shimada, K. Miyamoto, T. Okuda, K. Wu, L. Chen, Y. Yao, I. Matsuda, "Experimental realization of two-dimensional Dirac nodal line fermions in monolayer

 Cu_2Si'' , Nature Commun. 8, 1007/6p (2017).: BL-9A, BL-9B / cite 213 / international coauthor / IF= 17 / Top1

10) S. Wu, K. Sumida, K. Miyamoto, K. Taguchi, T. Yoshikawa, A. Kimura, Y. Ueda, M. Arita, M. Nagao, S. Watauchi, I. Tanaka, T. Okuda, "Direct evidence of hidden local spin polarization in a centrosymmetric superconductor LaO_{0.55}F_{0.45}BiS₂", Nature Commun. 8, 1919/7p (2017).: BL-9B,BL-9A / cite 49 / IF= 17 / Top10

BL-12

- 20) K. Matsuo, "Vacuum-ultraviolet circular dichroism study of oligosaccharides using a synchrotron-radiation spectrophotometer", Biomedical Spectroscopy and Imaging 6, 111-121 (2017).: BL-12 / cite / IF= -
- 21) Y. Izumi, K. Fujii, S. Yamamoto, K. Matsuo, H. Namatame, M. Taniguchi, and A. Yokoya, "DNA damage response induces structural alterations in histone H3-H4", J. Radiat. Research 58, 59-65 (2017).: BL-12 / cite 9 / IF= 2.2

BL-14

- 22) W. Tadano, M. Sawada, H. Namatame, M. Taniguchi, "Magnetic interlayer coupling in Fe/h-BN/Ni(111) probed by soft x-ray magnetic circular dichroism", J. Electron Spectrosc. Relat. Phenom. 220, 105-108 (2017).: BL-14 / cite 1 / IF= 1.9
- 23) M. Taguchi, H. Yamaoka, Y. Yamamoto, H. Sakurai, N. Tsujii, M. Sawada, H. Daimon, K. Shimada, J. Mizuki, "Unusual coexistence of negative and positive charge transfer in mixed-valence Na_xCa_{1-x}Cr₂O₄", Phys. Rev. B 96, 245113/6p (2017).: BL-14 / cite 4 / IF= 3.6

LaserARPES

24) H. Iwasawa, E. F. Schwier, M. Arita, A. Ino, H. Namatame, M. Taniguchi, Y. Aiura, K. Shimada, "Development of laser-based scanning m-ARPES system with ultimate energy and momentum resolutions", Ultramicroscopy 182, 85-91 (2017).: LaserARPES / cite 56 / international coauthor / IF= 2.4

Light Source

- 25) Y. Iwata, T. Fujimoto, S. Matsuba, T. Fujita, S. Sato, T. Furukawa, Y. Hara, K. Mizushima, Y. Saraya, R. Tansho, N. Saotome, T. Shirai, K. Noda, "Recent progress of a superconducting rotating-gantry for carbon-ion radiotherapy", Nucl. Instr. Meth. Phys. Res. B 406, 338-342 (2017).: Light source / cite 10 / IF= 1.2
- 26) M. Katoh, M. Fujimoto, N. S. Mirian, T. Konomi, Y. Taira, T. Kaneyasu, M. Hosaka, N. Yamamoto, A. Mochihashi, Y. Takashima, K. Kuroda, A. Miyamoto, K. Miyamoto, S. Sasaki, "Helical phase structure of radiation from an electron in circular motion", Sci. Rep. 7, 6130 (2017).: Light source / cite 51 / IF= 4.9 / Top10

BL-7

27) A. Rousuli, S. Nakamura, H. Sato, T. Ueda, Y. Matsumoto, S. Ohara, E. F. Schwier, T. Nagasaki, K. Mimura, H. Anzai, K. Ichiki, S. Ueda, K. Shimada, H. Namatame, M. Taniguchi, "Photoemission study of the electronic structure of the Kondo lattices Yb₂Pt₆X₁₅ (X=Al, Ga)", Phys. Rev. B 96, 045117/7p (2017).: BL-7 / cite 5 / IF= 3.6

BL-11

- 28) S. Asaoka, H. Okamura, K.H. Kim, Y. Hatanaka, K. Nakamoto, K. Hino, T. Oikawa, S. Hayakawa, T. Okuda, "Optimum reaction ratio of coal fly ash to blast furnace cement for effective removal of hydrogen sulfide", Chemosphere 168, 384-389 (2017).: BL-11 / cite 13 / international coauthor / IF= 8.3
- 29) K. Fujii, N. Ishimatsu, H. Maruyama, T. Shishidou, S. Hayakawa, N. Kawamura, "Relationship between element-selective electronic states and hydrogen absorption properties of Pd-M (M = Ru, Rh, Ag, and Au) alloys", Phys. Rev. B 95, 024116/7p (2017).: BL-11 / cite 7 / international coauthor / IF= 3.6

Others

- 30) C.-L. Lin, R. Arafune, R.-Y. Liu, M. Yoshimura, B. Feng, K. Kawahara, Z. Ni, E. Minamitani, S. Watanabe, Y. Shi, M. Kawai, T.-C. Chiang, I. Matsuda, N. Takagi, "Visualizing type-II Weyl points in tungsten ditelluride by quasiparticle interference", ACS Nano 11, 11459–11465 (2017).: cite 35 / international coauthor / IF= 17.1
- 31) K. Ichiki, T. Matsumoto, H. Anzai, R. Takeshita, K. Abe, S. Ishihara, T. Uozumi, H. Sato, A. Rousuli, S. Ueda, Y. Taguchi, K. Shimada, H. Namatame, M. Taniguchi, S. Hamann, A. Mitsuda, H. Wada, K. Mimura, "Valence transition in polycrystalline Eu(Rh_{1-x}Co_x)₂Si₂ studied by hard x-ray photoemission spectroscopy", J. Electron Spectrosc. Relat. Phenom. **220**, 28-32 (2017).: cite 1 / IF= 1.9
- 32) H. Sato, H. Nagata, F. Iga, Y. Osanai, A. Rousuli, K. Mimura, H. Anzai, K. Ichiki, S. Ueda, T. Takabatake, A. Kondo, K. Kindo, K. Shimada, H. Namatame, M. Taniguchi, "Different valence states of Tm in YB₆ and YbB₆", J. Electron Spectrosc. Relat. Phenom. **220**, 33-36 (2017).: cite 0 / IF= 1.9
- 33) H. Inui, O. Takahashi, A. Hiraya, "Theoretical study on X-ray absorption spectra and bond dynamics for core excitation from valence excited benzoic acids", J. Electron Spectrosc. Relat. Phenom. 220, 101-104 (2017).: cite 0 / IF= 1.9
- 34) A. Rousuli, H. Sato, F. Iga, K. Hayashi, K. Ishii, T. Wada, T. Nagasaki, K. Mimura, H. Anzai, K. Ichiki, S. Ueda, A. Kondo, K. Kindo, T. Takabatake, K. Shimada, H. Namatame, M. Taniguchi, "Hard x-ray photoemission study of Yb_{1-x}Zr_xB₁₂: the effects of electron doping on the Kondo insulator YbB12", J. Phys.: Condens. Matter 29, 265601 (2017).: cite 6 / IF= 2.7
- 35) S. Kumar, G. D. Dwivedi, A. G. Joshi, S. Chatterjee, A. K. Ghosh, "Study of structural, dielectric, optical properties and electronic structure of Cr-doped LaInO₃ perovskite nanoparticles", Materials Characterization 131, 108-115 (2017).: cite 18 / international coauthor / IF= 4.7
- 36) K. Ichiki, K. Mimura, H. Anzai, T. Uozumi, H. Sato, Y. Utsumi, S. Ueda, A. Mitsuda, H. Wada, Y. Taguchi, "Hard x-ray photoemission study of the temperature-induced valence transition system EuNi₂(Si_{1-x}Ge_x)₂", Phys. Rev. B 96, 045106/7p (2017).: cite 7 / IF= 3.6
- 37) T. Muro, T. Ohkochi, Y. Kato, Y. Izumi, S. Fukami, H. Fujiwara, T. Matsushita, "Wide-angle display-type retarding field analyzer with high energy and angular resolutions", Rev. Sci. Instrum. 88, 123106/10p (2017).: cite 27 / IF= 1.7
- 38) N. Tiwari, S. Kumar, A. K. Ghosh, S. Chatterjee, S. N. Jha, D. Bhattacharyya, "Structural investigations of (Mn, Dy) co-doped ZnO nanocrystals using x-ray absorption studies", RSC Advances 7, 56662-56675 (2017).: cite 24 / international coauthor / IF= 3.9
- 39) H. Yamaoka, N. Tsujii, M.-T. Suzuki, Y. Yamamoto, I. Jarrige, H. Sato, J.-F. Lin, T. Mito, J. Mizuki, H. Sakurai, O. Sakai, N. Hiraoka, H. Ishii, K.-D. Tsuei, M. Giovannini, E. Bauer, "Pressure-induced anomalous valence crossover in cubic YbCu₅-based compounds", Sci. Rep. 7, 5846/6p (2017).: cite 14 / international coauthor / IF= 4.9

2018

BL-1

- Y. Aiura, K. Ozawa, E. F. Schwier, K. Shimada, K. Mase, "Competition between itineracy and localization of electrons doped into the near-surface region of anatase TiO₂", J. Phys. Chem. C 122, 19661-19669 (2018).: BL-1 / cite 5 / IF= 3.9
- P. Eickholt, J. Noky, E. F. Schwier, K. Shimada, K. Miyamoto, T. Okuda, C. Datzer, M. Drüppel, P. Krüger, M. Rohlfing, M. Donath, "Location of the valence band maximum in the band structure of anisotropic 1T'-ReSe₂", Phys. Rev. B 97, 165130/9p (2018).: BL-1,BL-9B / cite 11 / international coauthor / IF= 3.6
- 3) K. N. Zhang, X. Y. Liu, H. X. Zhang, K. Deng, M. Z. Yan, W. Yao, M. T. Zheng, E. F. Schwier, K. Shimada, J. D. Denlinger, Y. Wu, W. H. Duan, S. Y. Zhou, "Evidence for a quasi-one-dimensional charge density wave in CuTe by angle-resolved photoemission spectroscopy", Phys. Rev. Lett. **121**, 206402 (2018).: BL-1 / cite 30 / international coauthor / IF= 8.7

BL-9A

- 4) B. J. Feng, J. Zhang, S. Ito, M. Arita, C. Cheng, L. Chen, K. Wu, F. Komori, O. Sugin, K. Miyamoto, T. Okuda, S. Meng, I. Matsuda, "Discovery of 2D anisotropic Dirac cones", Adv. Mater. 30, 1704025/6p (2018).: BL-9A / cite 76 / international coauthor / IF= 30.2 / Top10
- M. Takahashi, D. Ootsuki, M. Horio, M. Arita, H. Namatame, M. Taniguchi, N. L. Saini, H. Sugawara, T. Mizokawa, "Multi-band Electronic Structure of ferromagnetic CeRuPO", J. Phys. Soc. Jpn. 87, 043703 (2018).: BL-9A / cite 1 / international coauthor / IF= 1.5
- 6) H. Anzai, M. Arita, H. Namatame, M. Taniguchi, M. Ishikado, K. Fujita, S. Ishida, S. Uchida, A. Ino, "Rapid enhancement of nodal quasiparticle mass with heavily underdoping in Bi2212", Physica B 536, 667-671 (2018).: BL-9A / cite 1 / international coauthor / IF= 2.3
- 7) M. Maeda, K. Yamamoto, T. Mizokawa, N. L. Saini, M. Arita, H. Namatame, M. Taniguchi, G. Tan, L. D. Zhao, M. G. Kanatzidis, "Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe", Phys. Rev. B 97, 121110 (2018).: BL-9A / cite 15 / international coauthor / IF= 3.6
- B. Feng, J. Cao, M. Yang, Y. Feng, S.-L. Wu, B. Fu, M. Arita, K. Miyamoto, S. He, K. Shimada, Y. Shi, T. Okuda, Y. Yao, "Experimental observation of node-line-like surface states in LaBi", Phys. Rev. B 97, 155153/7p (2018).: BL-9A, BL-9B / cite 18 / international coauthor / IF= 3.6
- 9) R. Matsumoto, T. Sugimoto, T. Mizokawa, N. L. Saini, M. Arita, R. Jha, R. Higashinaka, T. D. Matsuda, Y. Aoki, "Orbital-dependent band renormalization in WTe₂ revealed by angle-resolved photoemission spectroscopy", Phys. Rev. B 98, 205138 (2018).: BL-9A / cite 2 / international coauthor / IF= 3.6
- K. Sumida, T. Natsumeda, K. Miyamoto, I. V. Silkin, K. Kuroda, K. Shirai, S. Zhu, K. Taguchi, M. Arita, J. Fujii, A. Varykhalov, O. Rader, V. A. Golyashov, K. A. Kokh, O. E. Tereshchenko, E. V. Chulkov, T. Okuda, A. Kimura, "Enhanced surface state protection and band gap in the topological insulator PbBi₄Te₄S₃", Phys. Rev. Mater. 2, 104201/8p (2018).: BL-9A / cite 4 / international coauthor / IF= 3.8

BL-9B

11) K. Miyamoto, H. Miyahara, K. Kuroda, T. Maegawa, A. Kimura, T. Okuda, "Peculiar Rashba spin texture induced by C-3v symmetry on the Bi(111) surface revisited", Phys. Rev. B 97, 85433/8p (2018).: BL-9B / cite 6 / IF= 3.6

- 12) E. Annese, T. Okuda, E. F. Schwier, H. Iwasawa, K. Shimada, M. Natamane, M. Taniguchi, I. P. Rusinov, S. V. Eremeev, K. A. Kokh, V. A. Golyashov, O. E. Tereshchenko, E. V. Chulkov, A. Kimura, "Electronic and spin structure of the wide-band-gap topological insulator: Nearly stoichiometric Bi₂Te₂S", Phys. Rev. B 97, 205113/6p (2018).: BL-9B,LaserARPES / cite 16 / international coauthor / IF= 3.6
- 13) J. Henk, K. Miyamoto, M. Donath, "Retrieving the initial-state spin polarization from spin-resolved photoemission: Proposal for a case study on W(110)", Phys. Rev. B 98, 45124/9p (2018).: BL-9B / cite 8 / international coauthor / IF= 3.6
 - P. Eickholt, J. Noky, E. F. Schwier, K. Shimada, K. Miyamoto, T. Okuda, C. Datzer, M. Drüppel, P. Krüger, M. Rohlfing, M. Donath, "Location of the valence band maximum in the band structure of anisotropic 1T'-ReSe₂", Phys. Rev. B 97, 165130/9p (2018).: BL-1,BL-9B / cite 11 / international coauthor / IF= 3.6
 - B. Feng, J. Cao, M. Yang, Y. Feng, S.-L. Wu, B. Fu, M. Arita, K. Miyamoto, S. He, K. Shimada, Y. Shi, T. Okuda, Y. Yao, "Experimental observation of node-line-like surface states in LaBi", Phys. Rev. B 97, 155153/7p (2018).: BL-9A, BL-9B / cite 18 / international coauthor / IF= 3.6

BL-12

- 14) Y. Izumi, K. Matsuo, H. Namatame, "Structural analysis of lysine-4 methylated histone H3 proteins using synchrotron radiation circular dichroism spectroscopy", Chirality 30, 536-540 (2018).: BL-12 / cite 7 / IF= 1.9
- 15) A. K. Kaveev, N. S. Sokolov, S. M. Suturin, N. S. Zhiltsov, V. A. Golyashov, K. A. Kokh, I. P. Prosvirin, O. E. Tereshchenko, M. Sawada, "Crystalline structure and magnetic properties of structurally ordered cobaltiron alloys grown on Bi-containing topological insulators and systems with giant Rashba splitting", Cryst. Eng. Comm. 20, 3419-3427 (2018).: BL-14 / cite 10 / international coauthor / IF= 3
- 16) K. Matsuo, K. Gekko, "Synchrotron-radiation vacuum-ultraviolet circular-dichroism spectroscopy for characterizing the structure of saccharides", Advances in Experimental Medicine and Biology 1104, 101-117 (2018).: BL-12 / cite 5 / IF= -
- 17) Y. Izumi, K. Matsuo, K. Fujii, A. Yokoya, M. Taniguchi, H. Namatame, "Circular dichroism spectroscopic study on structural alterations of histones induced by post-translational modifications in DNA damage responses: Lysine-9 methylation of H3", J. Radiat. Research 59, 108-115 (2018).: BL-12 / cite 10 / IF= 2.2
- 18) Y. Izumi, K. Matsuo, "Sample volume reduction using the Schwarzschild objective for a circular dichroism spectrophotometer and an application to the structural analysis of lysine-36 trimethylated histone H3 protein", Molecules 23, 2865/12p (2018).: BL-12 / cite 3 / IF= 4.9
- 19) K. Nishikubo, Y. Izumi, Y. Matsumoto, K. Fujii, K. Matsuo, A. Yokoya, "Structural Analysis of DNA repair protein XRCC4 applying circular dichroism in an aqueous solution", Radiation Protection Dosimetry ncy275, 1-4 (2018).: BL-12 / cite 1 / IF= 1

- 20) S. Suturin, A. Kaveev, A. Korovin, V. Fedorov, M. Sawada, N. Sokolov, "Structural transformations and interfacial iron reduction in heterostructures with epitaxial layers of 3d metals and ferrimagnetic oxides", J. Appl. Cryst. 51, 1069 (2018).: BL-14 / cite 8 / international coauthor / IF= 4.18
- 21) T. Ueno, H. Hino, A. Hashimoto, Y. Takeichi, M. Sawada, K. Ono, "Adaptive design of an X-ray magnetic circular dichroism spectroscopy experiment with Gaussian process modelling npj", NPJ Computational Materials 4, 4 (2018).: BL-14 / cite 22 / IF= 12.3

LaserARPES

- 22) H. Iwasawa, H. Takita, K. Goto, W. Mansuer, T. Miyashita, E. F. Schwier, A. Ino, K. Shimada, Y. Aiura, "Accurate and efficient data acquisition methods for high-resolution angle-resolved photoemission microscopy", Sci. Rep. 8, 17431 (2018).: LaserARPES / cite 8 / international coauthor / IF= 4.9
 - 12) E. Annese, T. Okuda, E. F. Schwier, H. Iwasawa, K. Shimada, M. Natamane, M. Taniguchi, I. P. Rusinov, S. V. Eremeev, K. A. Kokh, V. A. Golyashov, O. E. Tereshchenko, E. V. Chulkov, A. Kimura, "Electronic and spin structure of the wide-band-gap topological insulator: Nearly stoichiometric Bi₂Te₂S", Phys. Rev. B 97, 205113/6p (2018).: BL-9B,LaserARPES / cite 16 / international coauthor / IF= 3.6

Light Source

23) S. Matsuba, K. Kawase, A. Miyamoto, S. Sasaki, M. Fujimoto, T. Konomi, N. Yamamoto, M. Hosaka, M. Katoh, "Generation of vector beam with tandem helical undulators", Appl. Phys. Lett. 113, 021106/4p (2018).: Light source / cite 16 / international coauthor / IF= 3.7

BL-7

- 24) S. Muhammady, Y. Kurniawan, S. Ishiwata, A. Rousuli, T. Nagasaki, S. Nakamura, H. Sato, A. Higashiya, A. Yamasaki, Y. Hara, A. Rusydi, K. Takase, Y. Darma, "Electronic and thermoelectric properties of layered oxychalcogenides (BiO)CuCh (Ch=S, Se, Te)", Inorg. Chem. 57, 10214-10223 (2018).: BL-7 / cite 22 / international coauthor / IF= 4.4
- 25) S. Hosokawa, K. Maruyama, K. Kobayashi, J. R. Stellhorn, B. Paulus, A. Koura, F. Shimojo, T. Tsumuraya, M. Yamasaki, Y. Kawamura, S. Yoshioka, H. Sato, "Electronic structures and impurity cluster features in Mg-Zn-Y alloys with a synchronized long-period stacking ordered phase", J. Alloys Comp. **762**, 797-805 (2018).: BL-7,IPES / cite 6 / international coauthor / IF= 5.3
- 26) S. Hosokawa, J. R. Stellhorn, B. Paulus, K. Maruyama, K. Kobayashi, H. Okuda, M. Yamasaki, Y. Kawamura, H. Sato, "The seeds of Zn(6)Y(8)L1(2)-type clusters in amorphous Mg85Zn6Y9 alloy investigated by photoemission spectroscopy", J. Alloys Comp. **764**, 431-436 (2018).: BL-7,IPES / cite 5 / international coauthor / IF= 5.3
- 27) S. Hosokawa, H. Sato, M. Nakatake, H. Kato, "Electronic structures and heterogeneity of Zr-Cu-Ag metallic glasses", J. Non-Cryst. Solids 498, 281-287 (2018).: BL-7 / cite 2 / IF= 3.4
- 28) H. Anzai, R. Takakura, Y. Ono, S. Ishihara, H. Sato, H. Namatame, M. Taniguchi, T. Matsui, S. Noguchi, Y. Hosokoshi, "Valence-band structure of organic radical p-CF3PNN investigated by angle-resolved photoemission spectroscopy", Physica B 536, 664-666 (2018).: BL-7 / cite 0 / IF= 2.3
- 29) M. Nurmamat, Y. Ishida, R. Yori, K. Sumida, S. Y. Zhu, M. Nakatake, Y. Ueda, M. Taniguchi, S. Shin, Y. Akahama, A. Kimura, "Prolonged photo-carriers generated in a massive-and-anisotropic Dirac material", Sci. Rep. 8, 9073 (2018).: BL-7 / cite 7 / IF= 4.9

- 30) N. Tsunoji, M. V. Opanasenko, M. Kubu, J. Cejka, H. Nishida, S. Hayakawa, Y. Ide, M. Sadakane, T. Sano, "Highly active layered titanosilicate catalyst with high surface density of isolated titanium on the accessible interlayer surface", ChemCatChem 10, 2536-2540 (2018).: BL-11 / cite 25 / international coauthor / IF= 4.6
- 31) K. Kim, S.i Asaoka, I.-C, Lee, D.-S. Kim, S. Hayakawa, "Quantitative measurement on removal mechanisms of phosphate by class–F fly ash", Int. J. Coal Prep. and Utilization (2018).: BL-11 / cite 18 / international coauthor / IF= 2.1

- 32) A. Munoz-Noval, D. Nishio, T. Kuruma, S Hayakawa, "Coordination and structure of Ca(II)-acetate complexes in aqueous solution studied by a combination of Raman and XAFS spectroscopies", J. Mol. Struct. 1161, 512-518 (2018).: BL-11 / cite 6 / IF= 3.2
- 33) S. Asaoka, A Umehara, S. Otani, N. Fujii. T. Okuda, S. Nakai, W. Nishijima, K. Takeuchi, H. Shibata, W.A. Jadoon, S. Hayakawa, "Spatial distribution of hydrogen sulfide and sulfur species in coastal marine sediments Hiroshima Bay, Japan", Mar. Poll. Bull 133, 891-899 (2018).: BL-11 / cite 17 / IF= 6.5

Others

- 34) R. Y. Liu, K. Ozawa, N. Terashima, Y. Natsui, B. Feng, S. Ito, W. C. Chen, C. M. Cheng, S. Yamamoto, H. Kato, T. C. Chiang, I. Matsuda, "Controlling the surface photovoltage on WSe₂ by surface chemical modification", Appl. Phys. Lett. **112**, 211603 (2018).: cite 6 / international coauthor / IF= 3.7
- 35) N. Tiwari, S. Kumar, C. Kamal, A. Chakrabarti, C. L. Prajapat, P. K. Mishra, P. Mondal, S. N. Jha, D. Bhattacharyya, "Structural investigations of (Ni,Cu) Co-doped ZnO nanocrystals by X-ray absorption spectroscopy", Chemistryselect 3, 5644-5651 (2018).: cite 5 / international coauthor / IF= 2
- 36) S. Sharma, J. M. Siqueiros, G. Srinet, S. Kumar, B. Prajapati, R. K. Dwivedi, "Structural, electrical, optical and dielectric properties of sol-gel derived (1-x)BiFeO-(x)Pb(Zr_{0.52}Ti_{0.48})O₋₃ novel multiferroics materials", J. Alloys Comp. **732**, 666-673 (2018).: cite 22 / international coauthor / IF= 5.3
- 37) S. Adachi, T. Kawabata, K. Minomo, T. Kadoya, N. Yokota, H. Akimune, T. Baba, H. Fujimura, M. Fujiwara, Y. Funaki, T. Furuno, T. Hashimoto, K. Hatanaka, K. Inaba, Y. Ishii, M. Itoh, C. Iwamoto, K. Kawase, Y. Maeda, H. Matsubara, Y. Matsuda, H. Matsuno, T. Morimoto, H. Morita, M. Murata, T. Nanamura, I. Ou, S. Sakaguchi, Y. Sasamoto, R. Sawada, Y. Shimizu, K. Suda, A. Tamii, Y. Tameshige, M. Tsumura, M. Uchida, T. Uesaka, H. P. Yoshida, S. Yoshida, "Systematic analysis of inelastic a scattering off self-conjugate A=4n nuclei", Phys. Rev. C 97, 14601 (2018).: cite 19 / IF= 2.9
- 38) K. Fujii, Y. Izumi, A. Narita, K. K. Ghose, P. Lopez-Tarifa, A. Touati, R. Spezia, R. Vuilleumier, M. P. Gaigeot, M. F. Politis, M. A. H. Du Penhoate, A. Yokoya, "Roles of hydration for inducing decomposition of 2-deoxy-D-ribose by ionization of oxygen K-shell electrons", Radiation Research 189, 264-272 (2018).: cite 4 / international coauthor / IF= 3.1D
- 39) K. Miyamoto, H. Wortelen, T. Okuda, J. Henk, M. Donath, "Circular-polarized-light-induced spin polarization characterized for the Dirac-cone surface state at W(110) with C2_v symmetry", BL-9B / Sci. Rep. 8, 10440/7p (2018).: cite 15 / international coauthor / IF= 4.9

2019

- H. Shiono, S. Ishihara, K. Mimura, H. Sato, E. F. Schwier, K. Shimada, M. Taniguchi, S. Ideta, K. Tanaka, T. Zhuang, K. T. Matsumoto, K. Hiraoka, H. Anzai, "Temperature dependence of the Kondo resonance peak in photoemission spectra of YbCdCu₄", AIP Conf. Proc. 2054, 040013/4p (2019).: BL-1 / cite / IF= -
- 2) M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Yu. Vyazovskaya, S. V. Eremeev, Yu. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sáchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vida, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min, S. Moser, T.

R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, E. V. Chulkov, "Prediction and observation of an antiferromagnetic topological insulator", Nature **576**, 416-422 (2019).: BL-1 / cite 512 / international coauthor / IF= 60.9 / Top1

- 3) X. Wang, J. Chen, M. Zheng, T. V. Menshchikova, I. P. Rusinov, E. F. Schwier, F. Orbanić, S. Wu, K. Sumida, T. Yoshikawa, K. Miyamoto, M. Nurmamat, T. Okuda, K. Shimada, M. Novak, E. V. Chulkov, A. Kimura, "Disentangling orbital and spin textures of surface-derived states in non-symmorphic semimetal HfSiS", Phys. Rev. B 100, 205140/7p (2019).: BL-1,BL-9B / cite 6 / international coauthor / IF= 3.6
- 4) B. Feng, H. Zhou, Y. Feng, H. Liu, S. He, I. Matsuda, L. Chen, E. F. Schwier, K. Shimada, S. Meng, K. Wu, "Superstructure-induced splitting of Dirac cones in silicene", Phys. Rev. Lett. 122, 196801/6p (2019).: BL-1 / cite 22 / international coauthor / IF= 8.7
- 5) K. Fukutani, R. Stania, J. Jung, E. F. Schwier, K. Shimada, C. I. Kwon, J. S. Kim, H. W. Yeom, "Electrical tuning of the excitonic insulator ground state of Ta₂NiSe₅", Phys. Rev. Lett. **123**, 206401/5p (2019).: BL-1 / cite 33 / international coauthor / IF= 8.7
- 6) A. M. Shikin, D. A. Estyunin, Y. I. Surnin, A. V. Koroleva, E. V. Shevchenko, K. A. Kokh, O. E. Tereshchenko, S. Kumar, E. F. Schwiers, K. Shimada, T. Yoshikawa, Y. Saitoh, Y. Takeda, A. Kimura, "Dirac gap opening and Dirac-fermion-mediated magnetic coupling in antiferromagnetic Gd-doped topological insulators and their manipulation by synchrotron radiation", Sci. Rep. 9, 4813 (2019).: BL-1 / cite 38 / international coauthor / IF= 4.9

BL-9A

- D. Ootsuki, H. Ishii, K. Kudo, M. Nohara, M. Arita, H. Namatame, M. Taniguchi, N. L. Saini, T. Mizokawa, "Interplay between spin-orbit interaction and stripe-type charge-orbital order of IrTe₂", J. Phys. Chem. Solids 128, 270-274 (2019).: BL-9A / cite 6 / international coauthor / IF= 3.6
- 8) Y. Feng, Q. Jiang, B. Feng, M. Yang, T. Xu, W. Liu, X. Yang, M. Arita, E. F. Schwier, K. Shimada, H. O. Jeschke, R. Thomale, Y. Shi, X. Wu, S. Xiao, S. Qiao, S. He, "Rashba-like spin splitting along three momentum directions in trigonal layered PtBi₂", Nature Commun. 10, 4765 (2019).: BL-9A / cite 36 / international coauthor / IF= 17 / Top10
- 9) Y.-J. Hao, P. Liu, Y. Feng, X.-M. Ma, E. F. Schwier, M. Arita, S. Kumar, C. Hu, R. Lu, M. Zeng, Y. Wang, Z. Hao, H.-Y. Sun, K. Zhang, J. Mei, N. Ni, L. Wu, K. Shimada, C. Chen, Q. Liu, C. Liu, "Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi₂Te₄", Phys. Rev. X 9, 041038/10p (2019).: BL-9A,LaserARPES / cite 266 / international coauthor / IF= 14.2 / Top1
- 10) Y. Hu, X. Chen, S.-T. Peng, C. Lane, M. Matzelle, Z.-L. Sun, M. Hashimoto, D.-H. Lu, E. F. Schwier, M. Arita, T. Wu, R. S. Markiewicz, K. Shimada, X.-H. Chen, Z.-X. Shen, A. Bansil, S. D. Wilson, J.-F. He, "Spectroscopic evidence for electron-boson coupling in electron-doped Sr₂IrO₄", Phys. Rev. Lett. **123**, 216402 (2019).: BL-9A,LaserARPES / cite 13 / international coauthor / IF= 8.7

BL-9B

- O. J. Clark, F. Mazzola, I. Marković, J. Riley, J. Feng, B.-J. Yang, K. Sumida, T. Okuda, J. Fujii, I. Vobornik, T. Kim, K. Okawa, T. Sasagawa, MS Bahramy, P. DC King, "A general route to form topologically-protected surface", Electron. Struct. 1, 014002/13p (2019).: BL-9B / cite 11 / international coauthor / IF= -
- 12) P. K. Das, D. Di Sante, F. Cilento, C. Bigi, D. Kopic, D. Soranzio, A. Sterzi, J. A. Krieger, I. Vobornik, J. Fujii, T. Okuda, V. N. Strocov, M. BH Breese, F. Parmigiani, G. Rossi, S. Picozzi, R. Thomale, G. Sangiovanni, R. Cava, G. Panaccione, "Electronic properties of candidate type-II Weyl semimetal WTe₂. A review

perspective", Electron. Struct. 1, 014003/18p (2019).: BL-9B / cite 27 / international coauthor / IF= -

- 13) Y. Ohtsubo, Y. Yamashita, K. Hagiwara, S. Ideta, K. Tanaka, R. Yukawa, K. Horiba, H. Kumigashira, K. Miyamoto, T. Okuda, W. Hirano, F. Iga, S. Kimura, "Non-trivial surface states of samarium hexaboride at the (111) surface", Nature Commun. 10, 2298 (2019).: BL-9B / cite 19 / IF= 17
- 14) I. Markovic, C. A. Hooley, O. J. Clark, F. Mazzola, M. D. Watson, J. M. Riley, K. Volckaert, K. Underwood, M. S. Dyer, P. A. E. Murgatroyd, K. J. Murphy, P. Le Fevre, F. Bertran, J. Fujii, I. Vobornik, S. Wu, T. Okuda, J. Alaria, P. D. C. King, "Weyl-like points from band inversions of spin-polarised surface states in NbGeSb", Nature Commun. 10, 5485 (2019).: BL-9B / cite 9 / international coauthor / IF= 17
- 15) P. Zhang, Z. Wang, X. Wu, K. Yaji, Y. Ishida, Y. Kohama, G. Dai, Y. Sun, C. Bareille, K. Kuroda, T. Kondo, K. Okazaki, K. Kindo, X. Wang, C. Jin, J. Hu, R. Thomale, K. Sumida, S. Wu, K. Miyamoto, T. Okuda, H. Ding, G. D. Gu, T. Tamegai, T. Kawakami, M. Sato, S. Shin, "Multiple topological states in iron-based superconductors", Nature Phys. 15, 41-47 (2019).: BL-9B / cite 151 / international coauthor / IF= 20.9 / Top1
- 16) B. Feng, R.-W. Zhang, Y. Feng, B. Fu, S. Wu, K. Miyamoto, S. He, L. Chen, K. Wu, K. Shimada, T. Okuda, Y. Yao, "Discovery of Weyl nodal lines in a single-layer ferromagnet", Phys. Rev. Lett. **123**, 116401/6p (2019).: BL-9B / cite 60 / international coauthor / IF= 8.7 / Top10
- 17) K. Deng, M. Z. Yan, C. P. Yu, J. H. Li, X. Zhou, K. N. Zhang, Y. X. Zhao, K. Miyamoto, T. Okuda, W. H. Duan, Y. Wu, X. Y. Zhong, S. Y. Zhou, "Crossover from 2D metal to 3D Dirac semimetal in metallic PtTe₂ films with local Rashba effect", Sci. Bull. 64, 1044-1048 (2019).: BL-9B / cite 38 / international coauthor / IF= 14.2 / Top10
 - 3) X. Wang, J. Chen, M. Zheng, T. V. Menshchikova, I. P. Rusinov, E. F. Schwier, F. Orbanić, S. Wu, K. Sumida, T. Yoshikawa, K. Miyamoto, M. Nurmamat, T. Okuda, K. Shimada, M. Novak, E. V. Chulkov, A. Kimura, "Disentangling orbital and spin textures of surface-derived states in non-symmorphic semimetal HfSiS", Phys. Rev. B 100, 205140/7p (2019).: BL-1,BL-9B / cite 6 / international coauthor / IF= 3.6

BL-12

- 18) K. Gekko, "Synchrotron-radiation vacuum-ultraviolet circular dichroism spectroscopy in structural biology: an overview", Biophys. Physicobio. 16, 41-58 (2019).: BL-12 / cite 4 / IF= -
- 19) M. Matsusaki, A. Okuda, K. Matsuo, K. Gekko, T. Masuda, Y. Naruo, A. Hirose, K. Kono, Y. Tsuchi, R. Urade, "Regulation of plant ER oxidoreductin 1 (ERO1) activity for efficient oxidative protein folding", J. Bio. Chem. 294, 18820-18835 (2019).: BL-12 / cite 14 / IF= 4.8
- 20) T. Kawasaki, Y. Izumi, G. Ohori, H. Kitahara, T. Furuya, K. Yamamoto, K. Matsuo, M. Tani, K. Tsukiyama, "Study on irradiation effect of mid-infrared free electron laser on hen egg-white lysozyme by using terahertztime domain spectroscopy and synchrotron-radiation vacuum-ultraviolet circular-dichroism spectroscopy", J. Infrared, Millimeter, Terahertz Waves 40, 998-1009 (2019).: BL-12 / cite 2 / IF= 2.2
- 21) K. Nishikubo, Y. Izumi, Y. Matsumoto, K. Fujii, K. Matsuo, A. Yokoya, "Structural analysis of DNA repair protein XRCC4 applying circular dichroism in an aqueous solution", Radiation Protection Dosimetry 183, 36-39 (2019).: BL-12 / cite 1 / IF= 1

- 22) V. E. Bursian, A. K. Kaveev, A. M. Korovin, B. B. Krichevtsov, L. V. Lutsev, S. M. Suturin, M. Sawada, N. S. Sokolo, "Bulk-like dynamic magnetic properties of nickel ferrite epitaxial thin films grown on SrTiO₃(001) substrates", IEEE Magnetics Lett. 10, 6104505 (2019).: BL-14 / cite 6 / international coauthor / IF= 1.3
- 23) P. K. Gupta, S. Ghosh, S. Kumar, A. Pal, P. Singh, M. Alam, A. Singh, S. Roy, R. Singh, B. P. Singh, N. N.

Kumar, E. F. Schwier, M. Sawada, T. Matsumura, K. Shimada, H. J. Lin, Y. Y. Chin, A. K. Ghosh, S. Chatterjee, "Room temperature exchange bias in antiferromagnetic composite BiFeO₃-TbMnO₃", J. Appl. Phys. **126**, 243903 (2019).: BL-14 / cite 8 / international coauthor / IF= 2.8

- 24) A. Pal, S. Ghosh, S. Kumar, E. F. Schwier, M. Sawada, K. Shimada, M. Gupta, D. M. Phase, A. K. Ghosh, S. Chatterjee, "Electronic structure by X-ray absorption spectroscopy and observation of field induced unusually slow spin relaxation from magnetic properties in pyrochlore Eu_{2-x}Fe_xTi₂O₇", J. Magn. Magn. Mater. **476**, 7-17 (2019).: BL-14 / cite 8 / international coauthor / IF= 2.5
- 25) A. Pal, S. Ghosh, A. G. Joshi, S. Kumar, S. Patil, P. K. Gupta, P. Singh, V. K. Gangwar, P. Prakash, R. K. Singh, E. F. Schwier, M. Sawada, K. Shimada, A. K. Ghosh, A. Das, S. Chatterjee, "Investigation of multi-mode spin–phonon coupling and local B-site disorder in Pr₂CoFeO₆ by Raman spectroscopy and correlation with its electronic structure by XPS and XAS studies", J. Phys.: Condens. Matter **31**, 275802/10p (2019).: BL-14 / cite 24 / international coauthor / IF= 2.7

LaserARPES

- 26) E. F. Schwier, H. Takita, W. Mansur, A. Ino, M. Hoesch, M. D. Watson, A. A. Haghighirad K. Shimada, "Applications for ultimate spatial resolution in LASER based μ-ARPES : A FeSe case study", AIP Conf. Proc. 2054, 040017 (2019).: LaserARPES / cite - / international coauthor / IF= -
- 27) P. K. Das, D. Di Sante, I. Vobornik, J. Fujii, T. Okuda, E. Bruyer, A. Gyenis, B. E. Feldman, J. Tao, R. Ciancio, G. Rossi, M. N. Ali, S. Picozzi, A. Yadzani, G. Panaccione, R. J. Cava, "Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe₂ (vol 7, 11355, 2016)", Nature Commun. **10**, 648 (2019).: LaserARPES / cite 2 / international coauthor / IF= 17
- 28) S. Xiao, D. C. Peets, W. Liu, S. Zhang, Y. Feng, W.-H. Jiao, G.-H. Cao, E. F. Schwier, K. Shimada, C. Li, X. Zhou, S. He, "Electronic structure and H-T phase diagram of Eu(Fe_{1-x}Rh_x)₂As₂", Phys. Rev. B 100, 054510/9p (2019).: LaserARPES / cite 0 / international coauthor / IF= 3.6
- 29) H. Iwasawa, H. Takita, K. Goto, W. Mansuer, T. Miyashita, E. F. Schwier, A. Ino, K. Shimada, Y. Aiura, "Accurate and efficient data acquisition methods for high-resolution angle-resolved photoemission microscopy", Sci. Rep. 8, 17431 (2019).: LaserARPES / cite 8 / international coauthor / IF= 4.9
 - 9) Y.-J. Hao, P. Liu, Y. Feng, X.-M. Ma, E. F. Schwier, M. Arita, S. Kumar, C. Hu, R. Lu, M. Zeng, Y. Wang, Z. Hao, H.-Y. Sun, K. Zhang, J. Mei, N. Ni, L. Wu, K. Shimada, C. Chen, Q. Liu, C. Liu, "Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi₂Te₄", Phys. Rev. X 9, 041038/10p (2019).: BL-9A,LaserARPES / cite 266 / international coauthor / IF= 14.2 / Top1
 - 10) Y. Hu, X. Chen, S.-T. Peng, C. Lane, M. Matzelle, Z.-L. Sun, M. Hashimoto, D.-H. Lu, E. F. Schwier, M. Arita, T. Wu, R. S. Markiewicz, K. Shimada, X.-H. Chen, Z.-X. Shen, A. Bansil, S. D. Wilson, J.-F. He, "Spectroscopic evidence for electron-boson coupling in electron-doped Sr₂IrO₄", Phys. Rev. Lett. 123, 216402 (2019).: BL-9A,LaserARPES / cite 13 / international coauthor / IF= 8.7

Light Source

- 30) S. Matsuba, K. Shimada, M. Katoh, K. Kawase, K. Harada, "Design study of an electron storage ring for the future plan of Hiroshima Synchrotron Radiation Center", J. Phys.: Conf. Ser. 1350, 012015/5p (2019).: Light source / cite - / IF= -
- 31) Y. Hikosaka, T. Kaneyasu, M. Fujimoto, H. Iwayama, M. Katoh, "Coherent control in the extreme ultraviolet and attosecond regime by synchrotron radiation", Nature Commun. 10, 4988 (2019).: Light source / cite 29 / IF= 17

- 32) T. Kaneyasu, Y. Hikosaka, M. Fujimoto, H. Iwayama, M. Katoh, "Controlling the orbital aignment in atoms using cross-circularly polarized extreme ultraviolet wave packets", Phys. Rev. Lett. 123, 233401/5p (2019).: Light source / cite 10 / IF= 8.7
- 33) H. Kawaguchi, M. Katoh, "Orbital angular momentum of Liénard–Wiechert fields", Prog. Theo. Exp. Phys. 2019, 083A02/18p (2019).: Light source / cite 5 / IF= 4.6

BL-11

- 34) N. Tsunoji, H. Nishida, Y. Ide, K. Komaguchi, S. Hayakawa, Y. Yagenji, M. Sadakane, T. Sano, "Photocatalytic activation of C-H bonds by spatially controlled chlorine and titanium on the silicate layer", ACS Catal. 9, 5742-5751 (2019).: BL-11 / cite 18 / IF= 13.3
- 35) S. Asaoka, T. Dan, I. Asaono, S. Hayakawa, K. Takeda, "Identifying sulfur species adsorbed on particulate matters in exhaust gas emitted from various vessels", Chemosphere 223, 399-405 (2019).: BL-11 / cite 6 / IF= 8.3
- 36) H. Arase, T. Kai, S. Taniguchi, Y. Adachi, Y. Ooyama, T. Mori, M. Yanase, S. Hayakawa, Y. Kunugi, J. Ohshita, "Hydrophobic modification of SiO₂ surface with disilanobiphenyl and disilanobithiophene and the application to pentacene-based organic transisto", Composite Interfaces 26, 221-231 (2019).: BL-11 / cite 0 / IF= 2.7

Others

- 37) H. Anzai, S. Ishihara, H. Shiono, K. Mimura, T. Iwazumi, H. Sato, T. Zhuang, K. Matsumoto, K. Hiraoka, "Yb L_{III}-edge and Cu K-edge x-ray absorption spectroscopy in YbCdCu₄ and YbInCu₄", AIP Conf. Proc. 2054, 040006/4p (2019).: cite - / IF= -
- 38) J.-H. Jou, Y.-T. Lin, Y.-T. Su, W.-C. Song, S. Kumar, D. K. Dubey, J.-J. Shyue, H.-Y. Chang, Y.-W. You, T.-W.Liang, "Plausible degradation mechanisms in organic light-emitting diodes", Organic Electronics 67, 222-231 (2019).: cite 12 / international coauthor / IF= 2.9
- 39) T. Kono, M. Kakoki, T. Yoshikawa, X. Wang, K. Sumida, K. Miyamoto, T. Muro, Y. Takeda, Y. Saitoh, K. Goto, Y. Sakuraba, K. Hono, A. Kimura, "Element-specific density of states of Co₂MnGe revealed by resonant photoelectron spectroscopy", Phys. Rev. B 100, 165120 (2019).: cite 4 / IF= 3.6
- 40) H. Anzai, S. Ishihara, H. Shiono, K. Morikawa, T. Iwazumi, H. Sato, T. Zhuang, K. T. Matsumoto, K. Hiraoka, "Mixed-valence state of the rare-earth compounds YbXCu₄ (X = Mg, Cd, In, and Sn): Magnetic susceptibility, x-ray diffraction, and x-ray absorption spectroscopy investigations", Phys. Rev. B 100, 245124 (2019).: cite 7 / IF= 3.6
- 41) M. Hoesch, L. Gannon, K. Shimada, B. J. Parrett, M. D. Watson, T. K. Kim, X. D. Zhu, C. Petrovic, "Disorder quenching of the charge density wave in ZrTe₃", Phys. Rev. Lett. **122**, 17601 (2019).: cite 21 / international coauthor / IF= 8.7
- 42) Y. Izumi, "Structural alterations of histone proteins in DNA-damaged cells revealed by synchrotron radiation circular dichroism spectroscopy: a new piece of the DNA-damage-response puzzle", Quantum Beam Sci. 3, 23 (2019).: cite 0 / IF= 1.6

2020

BL-1

1) P. E. Evans, T. Komesu, L. Zhang, D.-F. Shao, A. J. Yost, S. Kumar, E. F. Schwier, K. Shimada, E. Tsymbal,

X. Hong, P. A. Dowben, "Detection of decoupled surface and bulk states in epitaxial orthorhombic $SrIrO_3$ thin films", AIP Advances **10**, 045027/5p (2020).: BL-1 / cite 4 / international coauthor / IF= 1.6

- 2) D. A. Estyunin, I. I. Klimovskikh, A. M. Shikin, E. F. Schwier, M. M. Otrokov, A. Kimura, S. Kumar, S. O. Filnov, Z. S Aliev, M. B. Babanly, E. V Chulkov, "Signatures of temperature driven antiferromagnetic transition in the electronic structure of topological insulator MnBi₂Te₄", APL Mater. 8, 021105/7p (2020).: BL-1 / cite 53 / international coauthor / IF= 5.9 / Top10
- 3) A. G. Rybkin, A. A. Rybkina, A. V. Tarasov, D. A. Pudikov, I. I. Klimovskikh, O. Y. Vilkov, A. E. Petukhov, D. Y. Usachova., D. A. Estyunin, V. Y. Voroshnin, A. Varykhalov, G. D. Santo, L. Petaccia, E. F. Schwier, K. Shimada, A. Kimura, A. M. Shikin, "A new approach for synthesis of epitaxial nano-thin Pt₅Gd alloy via intercalation underneath a graphene", Appl. Surf. Sci. **526**, 146687/8p (2020).: BL-1 / cite 4 / international coauthor / IF= 6.2
- M. Zheng, E. F. Schwier, H. Iwasawa, K. Shimada, "High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)", Chin. Phys. B 29, 067901/9p (2020).: BL-1 / cite 2 / IF= 1.4
- 5) H. Iwasawa, "High-resolution angle-resolved photoemission spectroscopy and microscopy", Electron. Struct.
 2, 043001 (2020).: BL-1,LaserARPES / cite 15 / IF= -
- 6) P. E Evans, T. Komesu, E. F Schwier, S. Kumar, K. Shimada, P. A. Dowben, "The band shifts in MoS₂(0001) and WSe₂(0001) induced by palladium adsorption", J. Phys.: Condens. Matter **32**, 465001/7p (2020).: BL-1 / cite 2 / international coauthor / IF= 2.7
- A. K. Kaveev, A. N. Terpitskiy, O. E. Tereshchenko, V. A. Golyashov, D. A. Estyunin, A. M. Shikin, E. F. Schwier, "Change of the topological surface states induced by ferromagnetic metals deposited on BiSbTeSe₂", J. Phys.: Conf. Ser. 1997, 012095/4p (2020).: BL-1,LaserARPES / cite / international coauthor / IF= -z
- Y. Akabane, T. Shimaiwa, Y. Goto, Y. Mizuguchi, T. Yokoya, M. Arita, S. Kumar, E. F. Schwier, K. Shimada, N. L. Saini, T. Mizokawa, "Momentum dependent band renormalization and surface aging effect on a zone center electron pocket in NaSn₂As₂ revealed by angle-resolved photoemission spectroscopy", J. Phys. Soc. Jpn. 89, 114707/7p (2020).: BL-1 / cite 0 / international coauthor / IF= 1.5
- 9) D. Geng, K. Yu, S. Yue, J. Cao, W. Li, D. Ma, C. Cui, M. Arita, S. Kumar, E. F. Schwier, K. Shimada, P. Cheng, L. Chen, K. Wu, Y. Yao, B. Feng, "Experimental evidence of monolayer AlB₂ with symmetry-protected Dirac cones", Phys. Rev. B 101, 161407(R)/5p (2020).: BL-1,BL-9A / cite 16 / international coauthor / IF= 3.6
- 10) Y. Zhang, K. Deng, X. Zhang, M. Wang, Y. Wang, C. Liu, J. W. Mei, S. Kumar, E. F. Schwier, K. Shimada, C. Y. Chen, B. Shen, "In-plane antiferromagnetic moments and magnetic polaron in the axion topological insulator candidate EuIn₂As₂", Phys. Rev. B 101, 205126/7p (2020).: BL-1 / cite 36 / international coauthor / IF= 3.6 / Top10
- 11) S. Yue, Y. Qian, M. Yang, D. Geng, C. Yi, S. Kumar, K. Shimada, P. Cheng, L. Chen, Z. Wang, H. Weng, Y. Shi, K. Wu, B. Feng, "Topological electronic structure in the antiferromagnet HoSbTe", Phys. Rev. B 102, 155109/6p (2020).: BL-1 / cite 20 / international coauthor / IF= 3.6
- 12) D. Yan, D. Geng, Q. Gao, Z. Cui, C. Yi, Y. Feng, C. Song, H. Luo, M. Yang, M. Arita, S. Kumar, E. F. Schwier, K. Shimada, L. Zhao, K. Wu, H. Weng, L. Chen, X. J. Zhou, Z. Wang, Y. Shi, B. Feng, "Superconductivity and Fermi-surface nesting in the candidate Dirac semimetal NbC", Phys. Rev. B 102, 205117/7p (2020).: BL-1,LaserARPES / cite 25 / international coauthor / IF= 3.6
- 13) H. Yamaoka, E. F. Schwier, Y. Yamamoto, M. Nakatake, M. Sawada, H. Sakurai, N. Tsujii, M. Arita, H. Iwasawa, M. Taguchi, K. Shimada, J. Mizuki, "Electronic and crystal structures of (Na_{1-x}Ca_x)Cr₂O₄ with anomalous colossal magnetoresistance", Phys. Rev. B 102, 235150/11p (2020).: BL-1,BL-7,BL-14 / cite 3 /

IF= 3.6

BL-9A

- 14) D. Ootsuki, K. Sawada, H. Goto, D. Hirai, D. Shibata, M. Kawamoto, A. Yasui, E. Ikenaga, M. Arita, H. Namatame, M. Taniguchi, T. Toriyama, T. Konishi, Y. Ohta, N. L. Saini, T. Yoshida, T. Mizokawa, H. Takagi, "Observation of metal to nonmagnetic insulator transition in polycrystalline RuP by photoemission spectroscopy", Phys. Rev. B 101, 165113/6p (2020).: BL-9A / cite 5 / international coauthor / IF= 3.6
- 15) S. Yue, H. Zhou, D. Geng, Z. Sun, M. Arita, K. Shimada, P. Cheng, L. Chen, S. Meng, K. Wu, B. Feng, "Experimental observation of Dirac cones in artificial graphene lattices", Phys. Rev. B 102, 201401R/5p (2020).: BL-9A / cite 8 / international coauthor / IF= 3.6
- 16) H. Anzai, S. Ishihara, K. Mimura, H. Sato, M. Arita, T. Zhuang, K. Hiraoka, "Abrupt change in hybridization gap at the valence transition of YbInCu₄", Phys. Rev. Research **2**, 033408/6p (2020).: BL-9A / cite 3 / IF= 4.3
- 17) S. Ito, M. Arita, J. Haruyama, B. Feng, W.-C. Chen, H. Namatame, M. Taniguchi, C.-M. Cheng, G. Bian, S.-J. Tang, T.-C. Chiang, O. Sugino, F. Komori, I. Matsuda, "Surface-state Coulomb repulsion accelerates a metal-insulator transition in topological semimetal nanofilms", Sci. Adv. 6, eaaz5015/7p (2020).: BL-9A / cite 10 / international coauthor / IF= 15.4
- 18) D. Ootsuki, K. Kodera, D. Shimonaka, M. Arita, H. Namatame, M. Taniguchi, M. Minohara, K. Horiba, H. Kumigashira, E. Ikenaga, A. Yasui, Y. Uchimoto, S. Toyoda, M. Morita, K. Fukuda, T. Yoshida, "Thickness-induced metal to insulator transition in Ru nanosheets probed by photoemission spectroscopy: Effects of disorder and Coulomb interaction", Sci. Rep. 10, 1541/7p (2020).: BL-9A / cite 2 / IF= 4.9
 - 9) D. Geng, K. Yu, S. Yue, J. Cao, W. Li, D. Ma, C. Cui, M. Arita, S. Kumar, E. F. Schwier, K. Shimada, P. Cheng, L. Chen, K. Wu, Y. Yao, B. Feng, "Experimental evidence of monolayer AlB2 with symmetry-protected Dirac cones", Phys. Rev. B 101, 161407(R)/5p (2020).: BL-1,BL-9A / cite 16 / international coauthor / IF= 3.6

BL-9B

- 19) M. Nurmamat, K. Okamoto, S. Zhu, T. V. Menshchikova, I. P. Rusinov, V. O. Korostelev, K. Miyamoto, T. Okuda, T. Miyashita, X. Wang, Y. Ishida, K. Sumida, E. F. Schwier, M. Ye, Z. S. Aliev, M. B. Babanly, I. R. Amiraslanov, E. V. Chulkov, K. A. Kokh, O. E. Tereshchenko, K. Shimada, S. Shin, A. Kimura, "Topologically nontrivial phase-change compound GeSb₂Te₄", ACS Nano 14, 9059-9065 (2020).: BL-9B / cite 22 / international coauthor / IF= 17.1
- 20) K. Sumida, Y. Sakuraba, K. Masuda, T. Kono, M. Kakoki, K. Goto, W. Zhou, K. Miyamoto, Y. Miura, T. Okuda, A. Kimura, "Spin-polarized Weyl cones and giant anomalous Nernst effect in ferromagnetic Heusler films", Commun. Mater. 1, 89 (2020).: BL-9B / cite 41 / IF= -
- 21) N. Mitsuishi, Y. Sugita, M. S. Bahramy, M. Kamitani, T. Sonobe, M. Sakano, T. Shimojima, H. Takahashi, H. Sakai, K. Horiba, H. Kumigashira, K. Taguchi, K. Miyamoto, T. Okuda, S. Ishiwata, Y. Motome, K. Ishizaka, "Switching of band inversion and topological surface states by charge density wave", Nature Commun. 11, 2466/9p (2020).: BL-9B / cite 17 / IF= 17
- 22) T. Hirahara, M. M. Otrokov, T. T. Sasaki, K. Sumida, Y. Tomohiro, S. Kusaka, Y. Okuyama, S. Ichinokura, M. Kobayashi, Y. Takeda, K. Amemiya, T. Shirasawa, S. Ideta, K. Miyamoto, K. Tanaka, S. Kuroda, T. Okuda, K. Hono, S. V. Eremeev E. V. Chulkov, "Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone", Nature Commun. **11**, 4821 (2020).: BL-9B / cite 40 / international coauthor / IF= 17 / Top10

- 23) K. Taguchi, K. Sumida, Y. Okuda, K. Miyamoto, A. Kimura, T. Oguchi, T. Okuda, "Spectroscopic evidence of quasi-one-dimensional metallic Rashba spin-split states on the Si(111)5x2-Au surface", Phys. Rev. B 101, 045430/8p (2020).: BL-9B / cite 6 / IF= 3.6
- 24) S. O. Filnov, I. I. Klimovskikh, D. A. Estyunin, A. V. Fedorov, V. Y. Voroshnin, A. V. Koroleva, A. G. Rybkin, E. V. Shevchenko, Z. S. Aliev, M. B. Babanly, I. R. Amiraslanov, N. T. Mamedov, E. F. Schwier, K. Miyamoto, T. Okuda, S. Kumar, A. Kimura, V. M. Misheneva, A. M. Shikin, E. V. Chulkov, "Probe-dependent Dirac-point gap in the gadolinium-doped thallium-based topological insulator TlBi_{0.9}Gd_{0.1}Se₂", Phys. Rev. B **102**, 085149/7p (2020).: BL-9B,LaserARPES / cite 7 / international coauthor / IF= 3.6
- 25) T. Imai, J. Chen, K. Kato, K. Kuroda, T. Matsuda, A. Kimura, K. Miyamoto, S. V. Eremeev, T. Okuda, "Experimental verification of a temperature-induced topological phase transition in TlBiS₂ and TlBiSe₂", Phys. Rev. B 102, 125151/7p (2020).: BL-9B / cite 5 / international coauthor / IF= 3.6
- 26) X. Wu, J. Li, X.-M. Ma, Y. Zhang, Y. Liu, C.-S. Zhou, J. Shao, Q. Wang, Y.-J. Hao, Y. Feng, E. F. Schwier, S. Kumar, H. Sun, P. Liu, K. Shimada, K. Miyamoto, T. Okuda, K. Wang, M. Xie, C. Chen, Q. Liu, C. Liu, Y. Zhao, "Distinct topological surface states on the two terminations of MnBi₄Te₇", Phys. Rev. X 10, 31013/10p (2020).: BL-9B,LaserARPES / cite 64 / international coauthor / IF= 14.2 / Top10
- 27) M. Sakano, M. Hirayama, T. Takahashi, S. Akebi, M. Nakayama, K. Kuroda, K. Taguchi, T. Yoshikawa, K. Miyamoto, T. Okuda, K. Ono, H. Kumigashira, T. Ideue, Y. Iwasa, N. Mitsuishi, K. Ishizaka, S. Shin, T. Miyake, S. Murakami, T. Sasagawa, T. Kondo, "Radial spin texture in elemental tellurium with chiral crystal structure", Phys. Rev. Lett. **124**, 136404/5p (2020).: BL-9B / cite 60 / IF= 8.7 / Top10
- 28) D. Y. Usachov, I. A. Nechaev, G. Poelchen, M. Güttler, E. E. Krasovskii, S. Schulz, A. Generalov, K. Kliemt, A. Kraiker, C. Krellner, K. Kummer, S. Danzenbächer, C. Laubschat, A. P. Weber, J. Sánchez-Barriga, E. V. Chulkov, A. F. Santander-Syro, T. Imai, K. Miyamoto, T. Okuda, D. V. Vyalikh, "Cubic Rashba effect in the surface spin structure of rare-earth ternary materials", Phys. Rev. Lett. **124**, 237202/6p (2020).: BL-9B / cite 28 / international coauthor / IF= 8.7 / Top10

BL-12

- 29) T. Masuda, S. Baba, K. Matsuo, S. Ito, B. Mikami, "The high-resolution crystal structure of lobster hemocyanin shows its enzymatic capability as a phenoloxidase", Archives Biochem. Biophys. 688, 108370 (2020).: BL-12 / cite 8 / IF= 4
- 30) K. Matsuo, M. Kumashiro, K. Gekko, "Characterization of the mechanism of interaction between alpha(1)acid glycoprotein and lipid membranes by vacuum-ultraviolet circular-dichroism spectroscopy", Chirality 32, 594-606 (2020).: BL-12 / cite 7 / IF= 1.9
- 31) K. Matsuo, K. Gekko, "Vacuum ultraviolet electronic circular dichroism study of D-glucose in aqueous solution", J. Phys. Chem. A 124, 642-651 (2020).: BL-12 / cite 2 / IF= 2.5

- 32) P. Singh, M. Alam, S. Kumar, K. Anand, V. K Gangwar, S. Ghosh, M. Sawada, K. Shimada, R. K. Singh, A. K. Ghosh S. Chatterjee, "Roles of Re-entrant cluster glass state and spin–lattice coupling in magneto–dielectric behavior of giant dielectric double perovskite La_{1.8}Pr_{0.2}CoFeO₆", J. Phys.: Condens. Matter **32**, 445801/9p (2020).: BL-14 / cite 6 / international coauthor / IF= 2.7
 - 12) H. Yamaoka, E. F. Schwier, Y. Yamamoto, M. Nakatake, M. Sawada, H. Sakurai, N. Tsujii, M. Arita, H. Iwasawa, M. Taguchi, K. Shimada, J. Mizuki, "Electronic and crystal structures of (Na_{1-x}Ca_x)Cr₂O₄ with anomalous colossal magnetoresistance", Phys. Rev. B 102, 235150/11p (2020).: BL-1,BL-7,BL-14 / cite

3 / IF = 3.6

LaserARPES

- 33) A. Singh, S. Kumar, M. Singh, P. Singh, R. Singh, V. K. Gangwar, A. Lakhani, S. Patil, E. F. Schwier, T. Matsumura, K. Shimada, A. K. Ghosh, S. Chatterjee, "Anomalous Hall effect in Cu doped Bi₂Te₃ topological insulator", J. Phys.: Condens. Matter **32**, 305602 (2020).: LaserARPES / cite 4 / international coauthor / IF= 2.7
- 34) A. K. Kaveev, V. A. Golyashov, A. E. Klimov, E. F. Schwier, S. M. Suturin, A. S. Tarasov, O. E. Tereshchenko, "Structure and magneto-electric properties of Co-based ferromagnetic films grown on the Pb_{0.71}Sn_{0.29}Te crystalline topological insulator", Mater. Chem. Phys. **240**, 122134/5p (2020).: LaserARPES / cite 4 / international coauthor / IF= 4.1
- 35) C. W. Nicholson, E. F. Schwier, K. Shimada, H. Berger, M. Hoesch, C. Berthod, and C. Monney, "Role of a higher-dimensional interaction in stabilizing charge density waves in quasi-one-dimensional NbSe3 revealed by angle-resolved photoemission spectroscopy", Phys. Rev. B 101, 045412/11p (2020).: LaserARPES / cite 10 / international coauthor / IF= 3.6
- 36) X.-Ming Ma, Z. Chen, E. F. Schwier, Y. Zhang, Y.-J. Hao, S. Kumar, R. Lu, J. Shao, Y. Jin, M. Zeng, X.-R. Liu, Z. Hao, Ke Zhang, W. Mansuer, C. Song, Y. Wang, B. Zhao, C. Liu, Ke Deng, J. Mei, K. Shimada, Y. Zhao, X. Zhou, B. Shen, W. Huang, C. Liu, Hu Xu, C. Chen, "Hybridization-induced gapped and gapless states on the surface of magnetic topological insulators", Phys. Rev. B 102, 245136/11p (2020).: LaserARPES / cite 29 / international coauthor / IF= 3.6 / Top10
- 37) A. M. Shikin, D. A. Estyunin, I. I. Klimovskikh, S. O. Filnov, E. F. Schwier, S. Kumar, K. Miyamoto, T. Okuda, A. Kimura, K. Kuroda, K. Yaji, S. Shin, Y. Takeda, Y. Saitoh, Z. S. Aliev, N. T. Mamedov, I. R. Amiraslanov, M. B. Babanly, M. M. Otrokov, S. V. Eremeev, E. V. Chulkov, "Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi₂Te₄", Sci. Rep. 10, 13226/13p (2020).: LaserARPES / cite 56 / international coauthor / IF= 4.9 / Top10
 - 5) H. Iwasawa, "High-resolution angle-resolved photoemission spectroscopy and microscopy", Electron. Struct. 2, 043001 (2020).: BL-1,LaserARPES / cite 15 / IF= -
 - 7) A. K. Kaveev, A. N. Terpitskiy, O. E. Tereshchenko, V. A. Golyashov, D. A. Estyunin, A. M. Shikin, E. F. Schwier, "Change of the topological surface states induced by ferromagnetic metals deposited on BiSbTeSe₂", J. Phys.: Conf. Ser. 1997, 012095/4p (2020).: BL-1,LaserARPES / cite / international coauthor / IF= -
 - 12) D. Yan, D. Geng, Q. Gao, Z. Cui, C. Yi, Y. Feng, C. Song, H. Luo, M. Yang, M. Arita, S. Kumar, E. F. Schwier, K. Shimada, L. Zhao, K. Wu, H. Weng, L. Chen, X. J. Zhou, Z. Wang, Y. Shi, B. Feng, "Superconductivity and Fermi-surface nesting in the candidate Dirac semimetal NbC", Phys. Rev. B 102, 205117/7p (2020).: BL-1,LaserARPES / cite 25 / international coauthor / IF= 3.6
 - 24) S. O. Filnov, I. I. Klimovskikh, D. A. Estyunin, A. V. Fedorov, V. Y. Voroshnin, A. V. Koroleva, A. G. Rybkin, E. V. Shevchenko, Z. S. Aliev, M. B. Babanly, I. R. Amiraslanov, N. T. Mamedov, E. F. Schwier, K. Miyamoto, T. Okuda, S. Kumar, A. Kimura, V. M. Misheneva, A. M. Shikin, E. V. Chulkov, "Probedependent Dirac-point gap in the gadolinium-doped thallium-based topological insulator TlBi_{0.9}Gd_{0.1}Se₂", Phys. Rev. B 102, 085149/7p (2020).: BL-9B,LaserARPES / cite 7 / international coauthor / IF= 3.6
 - 26) X. Wu, J. Li, X.-M. Ma, Y. Zhang, Y. Liu, C.-S. Zhou, J. Shao, Q. Wang, Y.-J. Hao, Y. Feng, E. F. Schwier, S. Kumar, H. Sun, P. Liu, K. Shimada, K. Miyamoto, T. Okuda, K. Wang, M. Xie, C. Chen, Q. Liu, C. Liu,

Y. Zhao, "Distinct topological surface states on the two terminations of $MnBi_4Te_7$ ", Phys. Rev. X 10, 31013/10p (2020).: BL-9B,LaserARPES / cite 64 / international coauthor / IF= 14.2 / Top10

Light Source

- 38) K. Fujimori, M. Kitaura, Y. Taira, M. Fujimoto, H. S. Zen, S. Watanabe, K. Kamada, Y. Okano, M. Katoh, M. Hosaka, J. Yamazaki, T. Hirade, Y. Kobayashi, A. Ohnishi, "Visualizing cation vacancies in Ce:Gd(3)Al(2)Ga(3)O(12)scintillators by gamma-ray-induced positron annihilation lifetime spectroscopy", Appl. Phys. Exp. 13, 085505 (2020).: Light source / cite 4 / IF= 2.6
- 39) L. Guo, H. Yamaguchi, M. Yamamoto, F. Matsui, G. X. Wang, F. Z. Liu, P. Yang, E. R. Batista, N. A. Moody, Y. Takashima, M. Katoh, "Graphene as reusable substrate for bialkali photocathodes", Appl. Phys. Lett. 116, 251903/5p (2020).: Light source / cite 5 / international coauthor / IF= 3.7
- 40) K. Ali, H. Ohgaki, H. Zen, T. Kii, T. Hayakawa, T. Shizuma, H. Toyokawa, Y. Taira, V. Iancu, G. Turturica, C. A. Ur, M. Fujimoto, M. Katoh, "Selective isotope CT imaging based on nuclear resonance fluorescence transmission method", IEEE Transact. Nucl. Sci. 67, 1976-1984 (2020).: Light source / cite 7 / international coauthor / IF= 1.9
- 41) T. Kaneyasu, Y. Hikosaka, M. Fujimoto, H. Iwayama, M. Katoh, "Polarization control in a crossed undulator without a monochromator", New J. Phys. 22, 083062 (2020).: Light source / cite 5 / IF= 3.5
- 42) Y. Taira, M. Fujimoto, S. E. Ri, M. Hosaka, M. Katoh, "Measurement of the phase structure of elliptically polarized undulator radiation", New J. Phys. 22, 093061/13p (2020).: Light source / cite 2 / IF= 3.5

BL-5

43) H. Yoshinaka, S. Inubushi, T. Wakita, T. Yokoya, Y. Muraoka, "Formation of Q-carbon by adjusting sp³ content in diamond-like carbon films and laser energy density of pulsed laser annealing", Carbon 167, 504-511 (2020).: BL-5 / cite 23 / IF= 9.4

BL-7

13) H. Yamaoka, E. F. Schwier, Y. Yamamoto, M. Nakatake, M. Sawada, H. Sakurai, N. Tsujii, M. Arita, H. Iwasawa, M. Taguchi, K. Shimada, J. Mizuki, "Electronic and crystal structures of (Na_{1-x}Ca_x)Cr₂O₄ with anomalous colossal magnetoresistance", Phys. Rev. B 102, 235150/11p (2020).: BL-1,BL-7,BL-14 / cite 3 / IF= 3.6

BL-11

44) S. Hayakawa, A. Kaneda, T. Mori, A. Munoz-Noval, S. Mineoi, H. Sumida, "Ti K-edge XAFS investigation of lithium migration in lithium titanium oxide anode material under charge and discharge cycle", Rad. Phys. Chem. 175, 108110 (2020).: BL-11 / cite 0 / IF= 2.7

Others

- 45) A. Singh, V. K. Gangwar, P. Shahi, D. Pal, R. Singh, S. Kumar, S. Singh, S. K. Gupta, S. Kumar, J. G. Cheng, S. Chatterjee, "Anomalous and topological Hall effect in Cu doped Sb₂Te₃ topological insulator", Appl. Phys. Lett. **117**, 092403/5p (2020).: cite 8 / international coauthor / IF= 3.7
- 46) M. A. E Sallam, D. M. S. A. Salem, G. M. H. Labib, T. N. M. A Youssef, K. Matsuo, "Studies on saccharide benzimidazoles: 2-(β-D-gulofuranosyl)benzimidazole and 2-(β-D-glucofuranosyl) benzimidazole Cnucleoside analogs; synthesis, anomeric configuration and antifouling potency", Carbohydr. Res. 496, 108073

(2020).: cite 3 / international coauthor / IF= 2.5

- 47) M. Kumar, B. Prajapati, A. Singh, S.Kumar, A. Kumar, S. Mittal, A. Aditya, "Structural, optical and magnetoelectric coupling analysis in 'Y' doped double perovskite La₂NiMnO₆ nanoparticles", Chem. Phys. 532, 110688 (2020).: cite 11 / international coauthor / IF= 2
- 48) S. Kumar, M. Kumar, A. Kumar, S. Sharma, P. Shahi, S. Chatterjee, A. K. Ghosh, "Investigations on structural and optical properties of Al-modified ZnO nanoparticles", J. Mater. Sci. - Mater. Electronics 31, 7715-7723 (2020).: cite 7 / international coauthor / IF= 2.5
- 49) I. Jakovac, M. Horvati, E. F. Schwier, A. Prokofiev, S. Paschen, H. Mitamura, T. Sakakibara, M. S. Grbic, "Pd-105 NMR and NQR study of the cubic heavy fermion system Ce₃Pd₂₀Si₆", J. Phys.: Condens. Matter **32**, 245601 (2020).: cite 2 / international coauthor / IF= 2.7
- 50) S. Nakamura, K. Hyodo, Y. Matsumoto, Y. Haga, H. Sato, S. Ueda, K. Mimura, K. Saiki, K. Iso, M. Yamashita, S. Kittaka, T. Sakakibara, S. Ohara, "Heavy fermion state of YbNi₂Si₃ without local inversion symmetry", J. Phys. Soc. Jpn. 89, 024705 (2020).: cite 2 / IF= 1.5
- 51) S. Hosokawa, N. Happo, K. Hayashi, K. Kimura, T. Matsushita, J. R. Stellhorn, M. Mizumaki, M. Suzuki, H. Sato, K. Hiraoka, "Valence-selective local atomic structures on an YbInCu₄ valence transition material by x-ray fluorescence holography", J. Phys. Soc. Jpn. 89, 034603 (2020).: cite 6 / IF= 1.5
- 52) Y. Ohmagari, T. Onimaru, Y. Yamane, Y. Shimura, K. Umeo, T. Takabatake, H. Sato, N. Kikugawa, T. Terashima, H. T. Hirose, S. Uji, "Reentrant quantum phase transitions in a frustrated effective spin-1/2 zigzag chain of an Yb-based semiconductor YbCuS₂", J. Phys. Soc. Jpn. **89**, 093701/5p (2020).: cite 3 / IF= 1.5
- 53) K. Morikawa, H. Shiono, H. Sato, S. Ideta, K Tanaka, T. Zhuang, K. Matsumoto, K. Hiraoka, H. Anzai, "Temperature dependence of the Kondo resonance peak in photoemission spectra of rare earth compound YbMgCu₄", JPS Conf. Proc. **30**, 011119/4p (2020).: cite - / IF= -
- 54) K. Maeda, H. Sato, Y. Akedo, T. Kawabata, K. Abe, R. Shimokasa, A. Yasui, M. Mizumaki, N. Kawamura, E. Ikenaga, S. Tsutsui, K. Matsumoto, K. Hiraoka, K. Mimura, "Yb L₃ resonant hard x-ray photoemission spectroscopy of valence transition compound YbInCu₄", JPS Conf. Proc. **30**, 011137/6p (2020).: cite - / IF=
- 55) Y. Naruo, S. Uechi, M. Sawada, A. Funatsu, F. Shimojo, S. Ida, M. Hara, "Ferromagnetic metal conversion directly from two-dimensional nickel hydroxide", Nanotechnology **31**, 435602 (2020).: cite 1 / IF= 3.2
- 56) K. Kuroda, Y. Arai, N. Rezaei, S. Kunisada, S. Sakuragi, M. Alaei, Y. Kinoshita, C. Bareille, R. Noguchi, M. Nakayama, S. Akebi, M. Sakano, K. Kawaguchi, M. Arita, S. Ideta, K. Tanaka, H. Kitazawa, K. Okazaki, M. Tokunaga, Y. Haga, S. Shin, H. S. Suzuki, R. Arita, T. Kondo, "Devil's staircase transition of the electronic structures in CeSb", Nature Commun. 11, 2888 (2020).: cite 19 / international coauthor / IF= 17
- 57) H. Anzai, K. Morikawa, H. Shiono, H. Sato, S.-i. Ideta, K. Tanaka, T. Zhuang, K. T. Matsumoto, K. Hiraoka, "Temperature dependence of the Kondo resonance in the photoemission spectra of the heavy-fermion compounds YbXCu₄ (X = Mg, Cd, and Sn)", Phys. Rev. B 101, 235160/7p (2020).: cite 6 / IF= 3.6
- 58) T. Yoshikawa, V. N. Antonov, T. Kono, M. Kakoki, K. Sumida, K. Miyamoto, Y. Takeda, Y. Saitoh, K. Goto, Y. Sakuraba, K. Hono, A. Ernst, A. Kimura, "Unveiling spin-dependent unoccupied electronic states of Co₂MnGe (Ga) film via Ge (Ga) L-_{2(,3)} absorption spectroscopy", Phys. Rev. B **102**, 064428 (2020).: cite 2 / international coauthor / IF= 3.6
- 59) K. R. Koswattage, Y. Izumi, K. Nakagawa, "Optical absorption cross-section of DNA bases-thymine and guanine-in the energy region from 3.1 to 250 eV (5-400 nm)", Quantum Beam Sci. 4, 30 (2020).: cite 2 / international coauthor / IF= 1.6
- 60) H. Sato, T. Nagasaki, K. Suekuni, H. I. Tanaka, A. Rousuli, S. Nakamura, N. Kawamura, X.-G. Zheng, T.

Fujii, T. Takabatake, "Cu 2p-1s x-ray emission spectroscopy of mineral tetrahedrite $Cu_{12}Sb_4S_{13}$ ", Rad. Phys. Chem. 175, 108148 (2020).: cite 2 / IF= 2.7

2021

- Z. Wang, Z. Hao, Y. Yu, Y. Wang, S. Kumar, X. Xie, M. Tong, Ke Deng, Y.-J. Hao, X.-M. Ma, Ke Zhang, C. Liu, M. Ma, J. Mei, G. Wang, E. F. Schwier, K. Shimada, F. Xu, C. Liu, W. Huang, J. Wang, T. Jiang, C. Chen, "Fermi velocity reduction of Dirac fermions around the Brillouin zone center in In₂Se₃-bilayer graphene heterostructures", Adv. Mater. **33**, 2007503/8p (2021).: BL-1 / cite 6 / international coauthor / IF= 30.2
- T. Yilmaz, X. Tong, Z. Dai, J. T. Sadowski, E. F. Schwier, K. Shimada, S. Hwang, K. Kisslinger, K. Kaznatcheev, E. Vescovo, B. Sinkovic, "Emergent flat band electronic structure in a VSe₂/Bi₂Se₃ heterostructure", Commun. Mater. 2, 11/8p (2021).: BL-1 / cite 12 / international coauthor / IF= -
- 3) P. J. Grenz, D. Thonig, M. Holtmann, K. Miyamoto, S. Kumar, E. F. Schwier, T. Okuda, J. Henk, M. Donath, "Adlayer influence on Dirac-type surface state at W(110)", J. Phys.: Condens. Matter 33, 285504/6p (2021).: BL-1,BL-9B / cite 1 / international coauthor / IF= 2.7
- A. Dhingra, T. Komesu, S. Kumar, K. Shimada, L. Zhang, X. Hong, P. A. Dowben, "Electronic band structure of iridates", Mater. Horizons 8, 2151-2168 (2021).: BL-1 / cite 1 / international coauthor / IF= 13.4
- 5) B. V. Senkovskiy, A. V. Nenashev, S. K. Alavi, Y. Falke, M.n Hell, P. Bampoulis, D. V. Rybkovskiy, D. Yu. Usachov, A. V. Fedorov, A. I. Chernov, F. Gebhard, K. Meerholz, D. Hertel, M. Arita, T. Okuda, K. Miyamoto, K. Shimada, F. R. Fischer, T. Michely, S. D. Baranovskii, K. Lindfors, T. Szkopek, A. Grüneis, "Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions", Nature Commun. 12, 2542/11p (2021).: BL-1 / cite 20 / international coauthor / IF= 17
- 6) Y. Wang, Y. Jin, L. Wang, Z. Hao, C. Liu, Y.-J. Hao, X.-M. Ma, S. Kumar, E. F. Schwier, K. Shimada, C. Liu, J. Mei, H. Xu, C. Chen, "Evidence of Weyl fermions in α-RuCl₃", Phys. Rev. B 103, 035150/9p (2021).: BL-1 / cite 2 / international coauthor / IF= 3.6
- 7) T. Morita, Y. Matsuzawa, S. Kumar, E. F. Schwier, K. Shimada, R. Higashinaka, T. D. Matsuda, Y. Aoki, N. L. Saini, T. Mizokawa, "Evolution of the Fermi surface in superconductor PrO_{1-x}F_xBiS₂ (x=0.0, 0.3, and 0.5) revealed by angle-resolved photoemission spectroscopy", Phys. Rev. B 103, 094510/6p (2021).: BL-1 / cite 0 / international coauthor / IF= 3.6
- 8) Y. Wang, Y. Qian, M. Yang, H. Chen, C. Li, Z. Tan, Y. Cai, W. Zhao, S. Gao, Ya Feng, S. Kumar, E. F. Schwier, L. Zhao, H. Weng, Y. Shi, G. Wang, Y. Song, Y. Huang, K. Shimada, Z. Xu, X. J. Zhou, G. Liu, "Spectroscopic evidence for the realization of a genuine topological nodal-line semimetal in LaSbTe", Phys. Rev. B 103, 125131/10p (2021).: BL-1 / cite 22 / international coauthor / IF= 3.6 / Top10
- 9) X. Wang, D. Geng, D. Yan, W. Hu, H. Zhang, S. Yue, Z. Sun, S. Kumar, E. F. Schwier, K. Shimada, P. Cheng, L. Chen, S. Nie, Z. Wang, Y. Shi, Y.-Q. Zhang, K. Wu, B. Feng, "Observation of topological edge states in the quantum spin Hall insulator Ta₂Pd₃Te₅", Phys. Rev. B 104, L241408/5p (2021).: BL-1 / cite 6 / international coauthor / IF= 3.6
- 10) K. Zhang, S. Zhao, Z. Hao, S. Kumar, E. F. Schwier, Y. Zhang, H. Sun, Y. Wang, Y. Hao, X. Ma, C. Liu, L. Wang, X. Wang, K. Miyamoto, T. Okuda, C. Liu, J. Mei, K. Shimada, C. Chen, Q. Liu, "Observation of spin-momentum-layer locking in a centrosymmetric crystal", Phys. Rev. Lett. **127**, 126402/7p (2021).: BL1,BL-9B / cite 11 / international coauthor / IF= 8.7

BL-9A

- 11) S. Cho, W. Jung, J. Hong, B. Kim, G. Han, M. Leandersson, T. Balasubramanian, M. Arita, K. Shimada, J. H. Shim, C. Kim, S. R. Park, "Observation of Dresselhaus type spin splitting of zinc blende structure semiconductors by circular dichroic photoemission study", Current Appl. Phys. 30, 96-101 (2021).: BL-9A / cite 2 / international coauthor / IF= 2.4
- 12) M. Ye, K. Kuroda, M. M. Otrokov, A. G. Ryabishchenkova, Q. Jiang, A. Ernst, E. V. Chulkov, M. Nakatake, M. Arita, T. Okuda, T. Matsushita, L. Tóth, H. Daimon, K. Shimada, Y. Ueda, A. Kimura, "Persistence of the topological surface states in Bi₂Se₃ against Ag intercalation at room temperature", J. Phys. Chem. C 125, 1784-1792 (2021).: BL-9A, BL-7 / cite 1 / international coauthor / IF= 3.5
- 13) Y. Matsuzawa, T. Morita, M. Arita, A. Giampietri, V. Kandyba, A. Barinov, A. Takahashi, Y. Nagakubo, T. Adachi, Y. Koike, A. Fujimori, N. L. Saini, T. Mizokawa, "Fermi surface geometry and inhomogeneous electronic states in Pr_{1.3-x}La_{0.7}Ce_xCuO₄ (x=0.05) with small superconducting volume fraction", J. Phys. Soc. Jpn. **90**, 054704/5p (2021).: BL-9A / cite 0 / international coauthor / IF= 1.5
- 14) D. Ootsuki, H. Okamura, S. Mitsumoto, Y. Ikemoto, T. Moriwaki, M. Arita, T. Yoshida, K. Kudo, H. Ishii, M. Nohara, T. Mizokawa, "Pressure induced spectral redistribution due to Te-2 dimer breaking in AuTe₂", J. Phys. Soc. Jpn. **90**, 114705/5p (2021).: BL-9A / cite 0 / IF= 1.5
- 15) S. Xiao, Y. Li, Y. Li, X. Yang, S. Zhang, W. Liu, X. Wu, B. Li, M. Arita, K. Shimada, Y. Shi, S. He, "Direct evidence of electron-hole compensation for extreme magnetoresistance in topologically trivial YBi", Phys. Rev. B 103, 115119/9p (2021).: BL-9A / cite 2 / international coauthor / IF= 3.6
- 16) X.-M. Ma, Y. Zhao, Ke Zhang, S. Kumar, R. Lu, J. Li, Q. Yao, J. Shao, F. Hou, X. Wu, M. Zeng, Y.-J. Hao, Z. Hao, Y. Wang, X.-R. Liu, H. Shen, H. Sun, J. Mei, K. Miyamoto, T. Okuda, M. Arita, E. F. Schwier, K. Shimada, Ke Deng, C. Liu, J. Lin, Y. Zhao, C. Chen, Q. Liu, C. Liu, "Realization of a tunable surface Dirac gap in Sb-doped MnBi₂Te₄", Phys. Rev. B 103, L121112/8p (2021).: BL9A,BL-9B,LaserARPES / cite 27 / international coauthor / IF= 3.6 / Top10
- 17) H. Bentmann, H. Maaß, J. Braun, C. Seibel, K. A. Kokh, O. E. Tereshchenko, S. Schreyeck, K. Brunner, L. W. Molenkamp, K. Miyamoto, M. Arita, K. Shimada, T. Okuda, J. Kirschner, C. Tusche, H. Ebert, J. Minár, F. Reinert, "Profiling spin and orbital texture of a topological insulator in full momentum space", Phys. Rev. B 103, L161107/6p (2021).: BL9A,BL-9B / cite 6 / international coauthor / IF= 3.6
- 18) S. Ideta, S. Johnston, T. Yoshida, K. Tanaka, M. Mori, H. Anzai, A. Ino, M. Arita, H. Namatame, M. Taniguchi, S. Ishida, K. Takashima, K. M. Kojima, T. P. Devereaux, S. Uchida, A. Fujimori, "Hybridization of bogoliubov quasiparticles between adjacent CuO2 Layers in the triple-layer cuprate Bi₂Sr₂Ca₂Cu₃O_{10+δ} studied by angle-resolved photoemission spectroscopy", Phys. Rev. Lett. **127**, 217004/6p (2021).: BL-9A / cite 3 / international coauthor / IF= 8.7

BL-9B

- 19) K. T. Ritter, K. Miyamoto, T. Okuda, M. Donath, "Rashba-type splitting of the Au(110) surface state: a combined inverse and direct photoemission study", Phys. Rev. B 104, L161101/6p (2021).: BL-9B / cite 1 / international coauthor / IF= 3.6
- 20) J. Dai, E. Frantzeskakis, N. Aryal, K. W. Chen, F. Fortuna, J. E. Rault, P. Le Fevre, L. Balicas, K. Miyamoto, T. Okuda, E. Manousakis, R. E. Baumbach, A. F. Santander-Syro, "Experimental observation and spin texture of Dirac node arcs in tetradymite topological metals", Phys. Rev. Lett. **126**, 196407/6p (2021).: BL-9B / cite 4 / international coauthor / IF= 8.7
 - 3) P. J. Grenz, D. Thonig, M. Holtmann, K. Miyamoto, S. Kumar, E. F. Schwier, T. Okuda, J. Henk, M.

Donath, "Adlayer influence on Dirac-type surface state at W(110)", J. Phys.: Condens. Matter 33, 285504/6p (2021).: BL-1,BL-9B / cite 1 / international coauthor / IF = 2.7

- 16) X.-M. Ma, Y. Zhao, Ke Zhang, S. Kumar, R. Lu, J. Li, Q. Yao, J. Shao, F. Hou, X. Wu, M. Zeng, Y.-J. Hao, Z. Hao, Y. Wang, X.-R. Liu, H. Shen, H. Sun, J. Mei, K. Miyamoto, T. Okuda, M. Arita, E. F. Schwier, K. Shimada, Ke Deng, C. Liu, J. Lin, Y. Zhao, C. Chen, Q. Liu, C. Liu, "Realization of a tunable surface Dirac gap in Sb-doped MnBi₂Te₄", Phys. Rev. B 103, L121112/8p (2021).: BL9A,BL-9B,LaserARPES / cite 27 / international coauthor / IF= 3.6 / Top10
- 17) H. Bentmann, H. Maaß, J. Braun, C. Seibel, K. A. Kokh, O. E. Tereshchenko, S. Schreyeck, K. Brunner, L. W. Molenkamp, K. Miyamoto, M. Arita, K. Shimada, T. Okuda, J. Kirschner, C. Tusche, H. Ebert, J. Minár, F. Reinert, "Profiling spin and orbital texture of a topological insulator in full momentum space", Phys. Rev. B 103, L161107/6p (2021).: BL9A,BL-9B / cite 6 / international coauthor / IF= 3.6
- 10) K. Zhang, S. Zhao, Z. Hao, S. Kumar, E. F. Schwier, Y. Zhang, H. Sun, Y. Wang, Y. Hao, X. Ma, C. Liu, L. Wang, X. Wang, K. Miyamoto, T. Okuda, C. Liu, J. Mei, K. Shimada, C. Chen, Q. Liu, "Observation of spin-momentum-layer locking in a centrosymmetric crystal", Phys. Rev. Lett. 127, 126402/7p (2021).: BL1,BL-9B / cite 11 / international coauthor / IF= 8.7

BL-12

- 21) T. Matsuo, K. Nakatani, T. Setoguchi, K. Matsuo, T. Tamada, Y. Suenaga, "Secondary structure of human de novo evolved gene product NCYM analyzed by vacuum-ultraviolet circular dichroism", Frontiers in Oncology 11, 688852 (2021).: BL-12 / cite 3 / IF= 5.2
- 22) T. Umezawa, N. Mizutani, K. Matsuo, Y. Tokunaga, F. Matsuda, T. Nehira, "Assignment of absolute configuration of bromoallenes by vacuum-ultraviolet circular dichroism (VUVCD)", Molecules 26, 1296/12p (2021).: BL-12 / cite 3 / IF= 4.9
- 23) M. Kumashiro, Y. Izumi, K. Matsuo, "Conformation of myelin basic protein bound to phosphatidylinositol membrane characterized by vacuum-ultraviolet circular-dichroism spectroscopy and molecular-dynamics simulations", Proteins: Structure, Function, and Bioinformatics 89, 1251-1261 (2021).: BL-12 / cite 3 / IF= 2.9

BL-14

24) K. Anand, A. Pal, M. Alam, S. Dan, S. Kumar, S. Ghosh, S. Kumari, A. Das, M. Sawada, A. Mohan, S. Chatterjee, "Emergence of metamagnetic transition, re-entrant cluster glass and spin phonon coupling in Tb₂CoMnO₆", J. Phys.: Condens. Matter **33**, 275802/10p (2021).: BL-14 / cite 12 / international coauthor / IF= 2.7

LaserARPES

- 25) M. Singh, S. Kumar, M. Alam, V. K. Gangwar, L. Ghosh, D. Pal, R. Singh, P. Shahi, P. Chaudhary, K. Shimada, S. Chatterjee, "Evidence of surface and bulk magnetic ordering in Fe and Mn doped Bi₂(SeS)₃ topological insulator", Appl. Phys. Lett. **118**, 132409/7p (2021).: LaserARPES / cite 1 / international coauthor / IF= 3.7
- 26) R. Ono, A. Marmodoro, J. Schusser, Y. Nakata, E. F. Schwier, J. Braun, H. Ebert, J. Minár, K. Sakamoto, P. Krüger, "Surface band characters of the Weyl semimetal candidate material MoTe₂ revealed by one-step angle-resolved photoemission theory", Phys. Rev. B 103, 125139/8p (2021).: LaserARPES / cite 5 / international coauthor / IF= 3.6
- 27) A. M. Shikin, D. A. Estyunin, N. L. Zaitsev, D. Glazkova, I. I. Klimovskikh, S. O. Filnov, A. G. Rybkin, E.

F. Schwier, S. Kumar, A. Kimura, N. Mamedov, Z. Aliev, M. B. Babanly, K. Kokh, O. E. Tereshchenko, M. M. Otrokov, E. V. Chulkov, K. A. Zvezdin, A. K. Zvezdin, "Sample-dependent Dirac-point gap in MnBi₂Te₄ and its response to applied surface charge: A combined photoemission and ab initio study", Phys. Rev. B **104**, 115168/11p (2021).: LaserARPES / cite 49 / international coauthor / IF= 3.6 / Top10

- 28) R. Lu, H. Sun, S. Kumar, Y. Wang, M. Gu, M. Zeng, Y.-J. Hao, J. Li, J. Shao, X.-M. Ma, Z. Hao, Ke Zhang, W. Mansuer, J. Mei, Y. Zhao, C. Liu, Ke Deng, W. Huang, B. Shen, K. Shimada, E. F. Schwier, C. Liu, Q. Liu, C. Chen, "Half-magnetic topological insulator with magnetization-induced Dirac gap at a selected surface", Phys. Rev. X 11, 011039/9p (2021).: LaserARPES / cite 51 / international coauthor / IF= 14.2 / Top10
- 29) R. C. Vidal, H. Bentmann, J. I. Facio, T. Heider, P. Kagerer, C. I. Fornari, T. R. F. Peixoto, T. Figgemeier, S. Jung, C. Cacho, B. Büchner, J. van den Brink, C. M. Schneider, L. Plucinski, E. F. Schwier, K. Shimada, M. Richter, A. Isaeva, F. Reinert, "Orbital complexity in intrinsic magnetic topological insulators MnBi₄Te₇ and MnBi₆Te₁₀", Phys. Rev. Lett. **126**, 176403/7p (2021).: LaserARPES / cite 39 / international coauthor / IF= 8.7 / Top10
- 30) V. K. Gangwar, S. Kumar, M. Singh, L. Ghosh, Y. Zhang, P. Shahi, M. Muntwiler, S. Patil, K. Shimada, Y. Uwatoko, J. Sau, M. Kumar, S. Chatterjee, "Pressure induced superconducting state in ideal topological insulator BiSbTe₃", Phys. Scr. 96, 055802/8p (2021).: LaserARPES / cite 1 / international coauthor / IF= 2.6
 - 16) X.-M. Ma, Y. Zhao, Ke Zhang, S. Kumar, R. Lu, J. Li, Q. Yao, J. Shao, F. Hou, X. Wu, M. Zeng, Y.-J. Hao, Z. Hao, Y. Wang, X.-R. Liu, H. Shen, H. Sun, J. Mei, K. Miyamoto, T. Okuda, M. Arita, E. F. Schwier, K. Shimada, Ke Deng, C. Liu, J. Lin, Y. Zhao, C. Chen, Q. Liu, C. Liu, "Realization of a tunable surface Dirac gap in Sb-doped MnBi₂Te₄", Phys. Rev. B 103, L121112/8p (2021).: BL9A,BL-9B,LaserARPES / cite 27 / international coauthor / IF= 3.6 / Top10

Light Source

- 31) K. Ali, H. S. Zen, H. Ohgaki, T. Kii, T. Hayakawa, T. Shizuma, H. Toyokawa, M. Fujimoto, Y. Taira, M. Katoh, "Three-dimensional nondestructive isotope-selective tomographic imaging of Pb-208 distribution via nuclear resonance fluorescence", Appl. Sciences-Basel 11, 3415/14p (2021).: Light source / cite 4 / international coauthor / IF= 2.9
- 32) Y. Hikosaka, T. Kaneyasu, M. Fujimoto, H. Iwayama, M. Katoh, "Reply to 'Comment on "Coherent control in the extreme ultraviolet and attosecond regime by synchrotron radiation"", Nature Commun. 12, 3782/3p (2021).: Light source / cite 4 / IF= 17
- 33) T. Kaneyasu, Y. Hikosaka, M. Fujimoto, H. Iwayama, M. Katoh, "Electron wave packet interference in atomic inner-shell excitation", Phys. Rev. Lett. 126, 113202/6p (2021).: Light source / cite 10 / IF= 8.7

BL-6

34) Q. Wang, F. Huang, Y. Cui, H. Yoshida, L. Wen, Y. Jin, "Influences of formation potential on oxide film of TC4 in 0.5 M sulfuric acid", Appl. Surf. Sci. 544, 148888/9p (2021).: BL-6 / cite 16 / international coauthor / IF= 6.2

- 35) O. Kubo, S. Kinoshita, H. Sato, K. Miyamoto, R. Sugahara, S. Endo, H. Tabata, T. Okuda, M. Katayama, "Kagome-like structure of germanene on Al(111)", Phys. Rev. B 104, 85404/6p (2021).: BL-7 / cite 11 / IF= 3.6
 - 12) M. Ye, K. Kuroda, M. M. Otrokov, A. G. Ryabishchenkova, Q. Jiang, A. Ernst, E. V. Chulkov, M. Nakatake,

BL-7

*M. Arita, T. Okuda, T. Matsushita, L. Tóth, H. Daimon, K. Shimada, Y. Ueda, A. Kimura, "Persistence of the topological surface states in Bi*₂Se₃ against *Ag intercalation at room temperature", J. Phys. Chem. C* **125**, 1784-1792 (2021).: BL-9A,BL-7 / cite 1 / international coauthor / IF= 3.5

Others

- 36) A. Kumar, M. Kumar, P. C. Sati, M. K. Srivastava, S. Ghosh, S. Kumar, "Structural, magnetic and optical properties of diluted magnetic semiconductor (DMS) phase of Ni modified CuO nanoparticles", Current Appl. Phys. 32, 24-35 (2021).: cite 11 / international coauthor / IF= 2.4
- 37) M. Khattab, Mahmoud E. Esmael, Ayman A. Farrag, Mohamed I. A. Ibrahim, "Structural assessment of the bioplastic (poly-3-hydroxybutyrate) produced by Bacillus flexus Azu-A2 through cheese whey valorization", Int. J. Biol. Macromol. 190, 319-332 (2021).: cite 20 / international coauthor / IF= 7.8
- 38) V. K Gangwar, S. Kumar, M. Singh, P. Singh, L. Ghosh, D. Pal, P. Shahi, Y. Uwatoko, E. F. Schwier, K. Shimada, D. K. Sharma, S. Kumar, S. Chatterjee, "Observation of antiferromagnetic ordering from muon spin resonance study and the Kondo effect in a Dy-doped Bi₂Se₃ topological insulator", J. Phys. D: Appl. Phys. 64, 455302/10p (2021).: cite 1 / international coauthor / IF= 3.2
- 39) S. Michimura, M. Kosaka, A. Machida, R. Numakura, R. Iizuka, S. Katano, Y. Imai, N. Shirakawa, Y. Yamasaki, H. Nakao, H. Sato, S. Ueda, K. Mimura, "Charge-ordered state and low-dimensional magnetic fluctuations in Yb₅Ge₄ single crystal", J. Phys. Soc. Jpn. **90**, 044703/12p (2021).: cite 0 / IF= 1.5
- 40) D. Pal, S. Kumar, P. Shahi, S. Dan, A. Verma, V. K. Gangwar, M. Singh, S. Chakravarty, Y. Uwatoko, S. Saha, S. Patil, S. Chatterjee, "Defect induced ferromagnetic ordering and room temperature negative magnetoresistance in MoTeP", Sci. Rep. 11, 9104/9p (2021).: cite 2 / international coauthor / IF= 4.9
- T. Miyashita, H. Iwasawa, T. Yoshikawa, S. Ozawa, H. Oda, T. Muro, H. Ogura, T. Sakami, F. Nakamura, A. Ino, "Emergence of low-energy electronic states in oxygen-controlled Mott insulator Ca₂RuO_{4+δ}", Solid State Commun. **326**, 114180/7p (2021).: cite 3 / IF= 1.6

2022

- X. Hou, M. Wumiti, S. Kumar, K. Shimada, M. Sawada, "Observation of mid-gap states emerging in the Oterminated interface of Cr₂O₃/graphene: A combined study of ab initio prediction and photoemission analysis", Appl. Surf. Sci. **594**, 153416/10p (2022).: BL-1,BL-14 / cite 1 / IF= 6.2
- S. Hikami, S. Ishida, A. Iyo, H. Eisaki, M. Arita, S. Kumar, E. F. Schwier, K. Shimada, N. L. Saini, T. Mizokawa, "Fermi surface geometry of heavily hole doped CaKFe₄As₄ revealed by angle-resolved photoemission spectroscopy", J. Phys. Soc. Jpn. **91**, 124704/7p (2022).: BL-1,BL-9A / cite 0 / international coauthor / IF= 1.5
- S. Yue, H. Zhou, Ya Feng, Y. Wang, Z. Sun, D. Geng, M. Arita, S. Kumar, K. Shimada, P. Cheng, L. Chen, Y. Yao, S. Meng, K. Wu, B. Feng, "Observation of one-dimensional Dirac fermions in silicon nanoribbons", Nano Lett. 22, 695-701 (2022).: BL-1,BL-9A / cite 10 / international coauthor / IF= 11.2 / Top10
- 4) Z.-Y. Sun,H. Zhou, C.-X. Wang, S. Kumar, D.-Y. Geng, S.-S. Yue, X. Han, Y. Haraguchi, K. Shimada, P. Cheng, "Observation of topological flat bands in the Kagome semiconductor Nb₃Cl₈", Nano Lett. 22, 4596-4602 (2022).: BL-1 / cite 20 / international coauthor / IF= 11.2 / Top10
- S. Ishizaka, A. Ino, T. Kono, Y. Miyai, S. Kumar, K. Shimada, H. Kitô, I. Hase, S. Ishida, K. Oka, H. Fujihisa, Y. Gotoh, Y. Yoshida, A. Iyo, H. Ogino, H. Eisaki, K. Kawashima, Y. Yanagi, A. Kimura, "Evidence for Dirac

nodal-line fermions in a phosphorous square-net superconductor", Phys. Rev. B **105**, L121103/6p (2022).: BL-1 / cite 1 / IF= 3.6

6) M. Holtmann, P. Krüger, K. Miyamoto, T. Okuda, P. J. Grenz, S. Kumar, K. Shimada, M. Donath, "Distinct Tamm and Shockley surface states on Re(0001) mixed by spin-orbit interaction", Phys. Rev. B 105, L241412/6p (2022).: BL-1,BL-9B / cite 6 / international coauthor / IF= 3.6

BL-9A

- 7) H. Anzai, R. Tawara, Y. Kikuchi, H. Sato, M. Arita, R. Takaaze, K. T. Matsumoto, K. Hiraoka, "Photoemission spectroscopy study on the heavy-fermion compound YbAgCu₄", J. Phys. Soc. Jpn. **91**, 114703/6p (2022).: BL-7,BL-9A / cite 2 / IF= 1.5
- B. V. Senkovskiy, A. V. Nenashev, S. K. Alavi, Y. Falke, H. M. Hell, P. Bampoulis, D. V. Rybkovskiy, D. Y. Usachov, A. V. Fedorov, A. I. Chernov, F. Gebhard, K. Meerholz, D. Hertel, M. Arita, T. Okuda, K. Miyamoto, K. Shimada, F. R. Fischer, T. Michely, S. D. Baranovskii, K. Lindfors, T. Szkopek, A. Gruneis, "Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions", Nature Commun. 12, 2542/11p (2022).: BL-9A,BL-9B / cite 20 / international coauthor / IF= 17
 - 2) S. Hikami, S. Ishida, A. Iyo, H. Eisaki, M. Arita, S. Kumar, E. F. Schwier, K. Shimada, N. L. Saini, T. Mizokawa, "Fermi surface geometry of heavily hole doped CaKFe₄As₄ revealed by angle-resolved photoemission spectroscopy", J. Phys. Soc. Jpn. 91, 124704/7p (2022).: BL-1,BL-9A / cite 0 / international coauthor / IF= 1.5
 - 3) S. Yue, H. Zhou, Ya Feng, Y. Wang, Z. Sun, D. Geng, M. Arita, S. Kumar, K. Shimada, P. Cheng, L. Chen, Y. Yao, S. Meng, K. Wu, B. Feng, "Observation of one-dimensional Dirac fermions in silicon nanoribbons", Nano Lett. 22, 695-701 (2022).: BL-1,BL-9A / cite 10 / international coauthor / IF= 11.2 / Top10

BL-9B

- T. Mizokawa, A. Barinov, V. Kandyba, A. Giampietri, R. Matsumoto, Y. Okamoto, K. Takubo, K. Miyamoto, T. Okuda, S. Pyon, "Domain dependent Fermi arcs observed in a striped phase dichalcogenide", Carbohydr. Polym. 5, 2200029/9p (2022).: BL-9B / cite 0 / international coauthor / IF= 5
- 10) S.-L. Wu, K. Yaji, Y. Ota, A. Harasawa, S. Shin, T. Imai, K. Miyamoto, M. Nagao, S. Watauchi, I. Tanaka, X. Ma, H. Yang, Y. Cai, L. Zhao, X. Zhou, T. Okuda, "Systematic study of electronic states of Ln(O,F)BiS₂ by spin- and angle-resolved photoemission spectroscopy", Phys. Rev. B 106, 104511/9p (2022).: BL-9B / cite 0 / international coauthor / IF= 3.6
 - 6) M. Holtmann, P. Krüger, K. Miyamoto, T. Okuda, P. J. Grenz, S. Kumar, K. Shimada, M. Donath, "Distinct Tamm and Shockley surface states on Re(0001) mixed by spin-orbit interaction", Phys. Rev. B 105, L241412/6p (2022).: BL-1,BL-9B / cite 6 / international coauthor / IF= 3.6
 - 8) B. V. Senkovskiy, A. V. Nenashev, S. K. Alavi, Y. Falke, H. M. Hell, P. Bampoulis, D. V. Rybkovskiy, D. Y. Usachov, A. V. Fedorov, A. I. Chernov, F. Gebhard, K. Meerholz, D. Hertel, M. Arita, T. Okuda, K. Miyamoto, K. Shimada, F. R. Fischer, T. Michely, S. D. Baranovskii, K. Lindfors, T. Szkopek, A. Gruneis, "Tunneling current modulation in atomically precise graphene nanoribbon heterojunctions", Nature Commun. 12, 2542/11p (2022).: BL-9A, BL-9B / cite 20 / international coauthor / IF= 17

BL-12

11) Y. Tomofuji, K. Matsuo, K. Terao, "Kinetics of denaturation and renaturation processes of double-stranded

helical polysaccharide, xanthan in aqueous sodium chloride", Carbohydr. Polym. **275**, 118681/9p (2022).: BL-12 / cite 8 / IF= 10.2

12) J. Maruyama, S. Maruyama, Y. Kashiwagi, M. Watanabe, T. Shinagawa, T. Nagaoka, T. Tamai, N. Ryu, K. Matsuo, M. Ohwada, K. Chida, T. Yoshii, H. Nishihara, F. Tani, H. Uyama, "Helically aligned fused carbon hollow nanospheres with chiral discrimination ability", Nanoscale 14, 3748-3757 (2022).: BL-12 / cite 1 / IF= 6.8

BL-14

 X. Hou, M. Wumiti, S. Kumar, K. Shimada, M. Sawada, "Observation of mid-gap states emerging in the O-terminated interface of Cr₂O₃/graphene: A combined study of ab initio prediction and photoemission analysis", Appl. Surf. Sci. 594, 153416/10p (2022).: BL-1,BL-14 / cite 1 / IF= 6.2

LaserARPES

- 13) S. Dan, S. Kumar, S. Dan, D. Pal, S. Patil, A. Verma, S. Saha, K. Shimada, S. Chatterjee, "Unraveling the obscure electronic transition and tuning of Fermi level in Cu substituted Sb₂Te₃ compound", Appl. Phys. Lett. 120, 022105/6p (2022).: LaserARPES / cite 0 / international coauthor / IF= 3.7
- 14) S. Sharma, S. Kumar, A. Kumar, K. Shimada, C. S. Yadav, "Electronic transport studies of Ag-doped Bi₂Se₃ topological insulator", J. Appl. Phys. **132**, 105108/8p (2022).: LaserARPES / cite 1 / international coauthor / IF= 2.8
- 15) R. Singh, S. Kumar, A. Jain, M. Singh, L. Ghosh, A. Singh, S. Banik, A. Lakhani, S.Patil, E. F. Schwier, K. Shimada, S. M. Yusuf, S. Chatterjee, "Competition between axial anomaly and ferromagnetic ordering in Bi_{2-x}Fe_xSe_{3-x}S_x topological insulator: A study of magnetic and magnetotransport properties", J. Mat. 8, 669-677 (2022).: LaserARPES / cite 0 / international coauthor / IF= 9
- 16) S. Sharma, S. Kumar, G. C. Tewari, G. Sharma, E. F. Schwier, K. Shimada, A. Taraphder, C. S. Yadav, "Magnetotransport and high-resolution angle-resolved photoelectron spectroscopy studies of palladiumdoped Bi₂Te₃", Phys. Rev. B 105, 115120/9p (2022).: LaserARPES / cite 3 / international coauthor / IF= 3.6
- 17) D. A. Estyunin, E. F. Schwier, S. Kumar, K. Shimada, K. Kokh, O. E. Tereshchenko, A. M. Shikin, "Features and applications of the energy shift of the topological surface state", Phys. Rev. B 105, 125303/11p (2022).: LaserARPES / cite 1 / international coauthor / IF= 3.6
- 18) A. P. Sakhya, S. Kumar, A. Pramanik, R. P. Pandeya, R. Verma, B. Singh, S. Datta, S. Sasmal, R. Mondal, E. F. Schwier, K. Shimada, A. Thamizhavel, K. Maiti, "Behavior of gapped and ungapped Dirac cones in the antiferromagnetic topological metal SmBi", Phys. Rev. B 106, 085132/6p (2022).: LaserARPES / cite 1 / international coauthor / IF= 3.6
- 19) A. Kumar, S. Kumar, Y. Miyai, K. Shimada, "Temperature-dependent band modification and energy dependence of the electron-phonon interaction in the topological surface state on Bi₂Te₃", Phys. Rev. B 106, L121104/8p (2022).: LaserARPES / cite 1 / IF= 3.6

Light Source

20) T. Kaneyasu, M. Hosaka, A. Mano, Y. Takashima, M. Fujimoto, E. Salehi, H. Iwayama, Y. Hikosaka, M. Katoh, "Double-pulsed wave packets in spontaneous radiation from a tandem undulator", Sci. Rep. 12, 9682/10p (2022).: Light source / cite 4 / IF= 4.9

BL-7

- 21) H. Yamaoka, S. Yamanaka, M. Hikiji, C. Michioka, N. Tsujii, H. Sato, N. Hiraoka, H. Ishii, K. Yoshimura, "Temperature and pressure dependences of the electronic and crystal structures of Yb₄TGe₈ (T = Cr, Mn, Fe, Co, and Ni) studied by high-resolution x-ray absorption spectroscopy, x-ray diffraction, and photoelectron spectroscopy", J. Phys. Soc. Jpn. **91**, 24704/8p (2022).: BL-7 / cite 4 / international coauthor / IF= 1.5
- 22) H. Yamaoka, S. Yamanaka, A. Ohmura, N. Tsujii, J. Valenta, Y. Furue, H. Sato, H. Ishii, N. Hiraoka, C. Michioka, H. Ueda, K. Yoshimura, "Valence transitions in Yb_{1+x}In_{1-x}Cu₄ studied by high-resolution x-ray absorption spectroscopy, x-ray diffraction, and photoelectron spectroscopy", J. Phys. Soc. Jpn. **91**, 124701/10p (2022).: BL-7 / cite 2 / international coauthor / IF= 1.5
 - 7) H. Anzai, R. Tawara, Y. Kikuchi, H. Sato, M. Arita, R. Takaaze, K. T. Matsumoto, K. Hiraoka, "Photoemission spectroscopy study on the heavy-fermion compound YbAgCu₄", J. Phys. Soc. Jpn. 91, 114703/6p (2022).: BL-7,BL-9A / cite 2 / IF= 1.5

Others

- 23) M. I. A. Ibrahim, M.d S. Amer, H. A. H. Ibrahim, E. H. Zaghloul, "Considerable production of Ulvan from Ulva lactuca with special emphasis on its antimicrobial and anti-fouling properties", Appl. Biochem. Biotech. 194, 3097-3118 (2022).: cite 16 / international coauthor / IF= 2.6 / Top10
- 24) S. Kusaka, T. T. Sasaki, K. Sumida, S. Ichinokura, S. Ideta, K. Tanaka, K. Hono, T. Hirahara, "Fabrication of (Bi₂)m(Bi₂Te₃)n superlattice films by Te desorption from a pristine Bi₂Te₃ film", Appl. Phys. Lett. **120**, 173102/5p (2022).: cite 2 / IF= 3.7
- 25) M. Singh, L. Ghosh, V. K. Gangwar, Y. Kumar, D. Pal, P. Shahi, S. Kumar, S. Mukherjee, K. Shimada, S. Chatterjee, "Correlation between changeover from weak antilocalization (WAL) to weak localization (WL) and positive to negative magnetoresistance in S-doped Bi_{1.5}Sb_{0.5}Te_{1.3}Se_{1.7}", Appl. Phys. Lett. **121**, 032403/8p (2022).: LaserARPES / cite 2 / international coauthor / IF= 3.7
- 26) A. A. M. El-Sayed, M. I. A. Ibrahim, S. Shabaka, M. M. Ghobashy, M. A. Shreadah, S. A. A. Ghani, "Microplastics contamination in commercial fish from Alexandria City, the Mediterranean Coast of Egypt", Environ. Poll. **313**, 120044 (2022).: cite 10 / international coauthor / IF= 9.5
- 27) A. El-Maradny, M. I. A. Ibrahim, I. M. Radwan, M. A. Fahmy, H. I. Emara, L. A. Mohamed, "Horizontal and vertical segregation of polycyclic aromatic hydrocarbons in the Egyptian Mediterranean coast", Environ. Sci. Poll. Reserch 29, 86707-86721 (2022).: cite 2 / international coauthor / IF= 5.4
- 28) F. Kato, Y. Yamaguchi, K. Inouye, K. Matsuo, Y. Ishida, M. Inouye, "A novel gyrase inhibitor from toxinantitoxin system expressed by Staphylococcus aureus", FEBS J., early publication (2022).: cite 2 / international coauthor / IF= 5.4
- 29) E. H. Zaghloul, M. I. A. Ibrahim, "Production and characterization of exopolysaccharide from newly isolated marine probiotic lactiplantibacillus plantarum EI6 with in vitro wound healing activity", Front. Microbiol., 903363/13p (2022).: cite 13 / international coauthor / IF= 6.2 / Top10
- 30) S. Wibowo, J. Costa, M. C. Baratto, R. Pogni, S. Widyarti, A. Sabarudin, K. Matsuo, S. B. Sumitro, "Quantification and improvement of the dynamics of human serum albumin and glycated human serum albumin with astaxanthin/astaxanthin-metal ion complexes: physico-chemical and computational approaches", Int. J. Mol. Sci. 23, 4771/19p (2022).: cite 1 / international coauthor / IF= 6.2
- 31) M. H. Ebeid, M. I. A. Ibrahim, E. M. A. Elkhair, L. A. Mohamed, A. A. Halim, K. S. Shaban, M. Fahmy, "The modified Canadian water index with other sediment models for assessment of sediments from two harbours on the Egyptian Mediterranean coast", J. Hazard. Mater. Adv. 8, 100180/12p (2022).: cite 4 / international

coauthor / IF= -

- 32) P. Rajput, M. Kumar, R. S. Joshi, P. Singh, M. Nand, R. Srivastava, Y. Patidar, S. Kumar, A. Sagdeo, P. R. Sagdeo, "Structural, optical and vacancies investigations of Li-doped ZnO", J. Nanoparticle Research 24, 161 (2022).: cite 3 / international coauthor / IF= 2.3
- 33) H. Iwasawa, T. Ueno, T. Masui, S. Tajima, "Unsupervised clustering for identifying spatial inhomogeneity on local electronic structures", NPJ Quantum Marer. 7, 24/10p (2022).: cite 5 / IF= 6.3
- 34) H. Sato, T. Matsumoto, N. Kawamura, K. Maeda, T. Takabatake, A. M. Strydom, "Valence transition of the intermetallic compound Ce₂Rh₂Ga probed by resonant x-ray emission spectroscopy", Phys. Rev. B 105, 035113/7p (2022).: cite 1 / international coauthor / IF= 3.6
- 35) H. Tanaka, S. Okazaki, K. Kuroda, R. Noguchi, Y. Arai, S. Minami, S. Ideta, K. Tanaka, D.-H. Lu, M. Hashimoto, V. Kandyba, M. Cattelan, A. Barinov, T. Muro, T. Sasagawa, T. Kondo, "Large anomalous Hall effect induced by weak ferromagnetism in the noncentrosymmetric antiferromagnet CoNb₃S₆", Phys. Rev. B 105, L121102 (2022).: cite 11 / international coauthor / IF= 3.6
- 36) A. Ino, T. Kubo, S. Ishizaka, H. Takita, W. Mansuer, K. Shimada, S. Ueda, H. Kitô, I. Hase, S. Ishida, K. Oka, H. Fujihisa, Y. Gotoh, Y. Yoshida, A. Iyo, H. Ogino, H. Eisaki, K. Kawashima, Y. Yanagi, "Direct observation of the electronic structure of the layered phosphide superconductor ZrP_{2-x}Se_x", Phys. Rev. B 105, 195111/8p (2022).: cite 0 / IF= 3.6
- 37) Z. H. Tin, T. Adachi, A. Takemori, K. Yoshino, N. Katayama, S. Miyasaka, S. Ideta, K. Tanaka, S. Tajima, "Observation of bands with dxy orbital character near the Fermi level in NdFeAs_{1-x}P_xO_{0.9}F_{0.1} using angleresolved photoemission spectroscopy", Phys. Rev. B 105, 205106/10p (2022).: cite 0 / IF= 3.6
- 38) S. Ichinokura, M. Toyoda, M. Hashizume, K. Horii, S. Kusaka, S. Ideta, K. Tanaka, R. Shimizu, T. Hitosugi, S. Saito, "Van Hove singularity and Lifshitz transition in thickness-controlled Li-intercalated graphene", Phys. Rev. B 105, 235307/6p (2022).: cite 1 / IF= 3.6
- 39) H. Sato, T. Matsumoto, K. Maeda, Y. Taguchi, N. Kawamura, H. Ishibashi, "Metal-insulator transition in CuIr₂S₄ observed by Cu Kα resonant x-ray emission spectroscopy", Phys. Rev. B 106, 155151/8p (2022).: cite 0 / IF= 3.6
- 40) S. A. A. Ghani, A. A. M. El-Sayed, M. I. A. Ibrahim, M. M. Ghobashy, M. A. Shreadah, S. Shabaka, "Characterization and distribution of plastic particles along Alexandria beaches, Mediterranean Coast of Egypt, using microscopy and thermal analysis techniques", Sci. Total Environ. 834, 155363/10p (2022).: cite 10 / international coauthor / IF= 9.6
- 41) S. Shabaka, M. N. Moawad, M. I. A. Ibrahim, A. A. M. El-Sayed, M. M. Ghobashy, A. Z. Hamouda, M. A. El-Alfy, D. H. Darwish, N. A. E. Youssef, "Prevalence and risk assessment of microplastics in the Nile Delta estuaries: "The Plastic Nile" revisited", Sci. Total Environ. 852, 158446/11p (2022).: cite 11 / international coauthor / IF= 9.6 / Top10

2023

BL-1

 Ao Zhang, Ke Deng, J. Sheng, P. Liu, S. Kumar, K. Shimada, Z. Jiang, Z. Liu, D. Shen, J. Li, J. Ren, Le Wang, L. Zhou, Y. Ishikawa, T. Ohhara, Q. Zhang, G. McIntyre, D. Yu, E. Liu, L. Wu, C. Chen, Q. Liu, "Chiral Dirac fermion in a collinear antiferromagnet", Chin. Phys. Lett. 40, 126101/8p (2023).: BL-1 / cite 0 / international coauthor / IF= 2

- R. Suzuki, R. Kakihara, H. Ishii, T. Miyahara, Y. Maniwa, K. Yanagi, H. Iwasawa, K. Shimada, H. Namatame, M. Taniguchi, "Photoemission study of one-Dimensional electronic states of (6,5), (6,6), and (7,4) singlewalled carbon nanotubes", J. Phys. Soc. Jpn. 92, 024703/6p (2023).: BL-1 / cite 0 / IF= 1.5
- 3) H. Rong, Z. Huang, X. Zhang, S. Kumar, F. Zhang, C. Zhang, Y. Wang, Z. Hao, Y. Cai, Le Wang, C. Liu, X. Ma, S. Guo, B. Shen, Yi Liu, S. Cui, K. Shimada, Q. Wu, J. Lin, Y. Yao, Z. Wang, Hu Xu, C. Chen, "Realization of practical eightfold fermions and fourfold van Hove singularity in TaCo₂Te₂", NPJ Quantum Marer. 8, 29/6p (2023).: BL-1 / cite 1 / international coauthor / IF= 6.3
- M. Holtmann, P. Krüger, K. Miyamoto, T. Okuda, K. Shimada, M. Donath, "Surface electronic structure of Re(0001): A spin-resolved photoemission study", Phys. Rev. B 107, 165420/11p (2023).: BL-1,BL-9B / cite 0 / international coauthor / IF= 3.6

BL-9A

- 5) H. Anzai, A. Hariki, H. Sato, M. Arita, T. Zhuang, K. Hiraoka, "Observation of temperature-dependent Fermi surface evolution at the valence transition of YbInCu₄", Phys. Rev. B 108, 075116/8p (2023).: BL-9A / cite 0 / IF= 3.6
- 6) R. Itaya, Y. Toichi, R. Nakanishi, N. Ebara, Y. Nakata, K. Kasai, K. Kuroda, M. Arita, I. Yamamoto, K. Fukutani, K. Sakamoto, "Creation of a p-type TlBiSe₂ using photo-induced doping", Phys. Rev. Mater. 7, 114201/6p (2023).: BL-9A / cite 0 / international coauthor / IF= 3.8

BL-9B

- 7) B. Geldiyev, M. Ünzelmann, P. Eck, T. Kißlinger, J. Schusser, T. Figgemeier, P. Kagerer, N. Tezak, M. Krivenkov, A. Varykhalov, A. Fedorov, L. Nicolaï, J. Minár, K. Miyamoto, T. Okuda, K. Shimada, D. Di Sante, G. Sangiovanni, L. Hammer, M. A. Schneider, H. Bentmann, F. Reinert, "Strongly anisotropic spin and orbital Rashba effect at a tellurium noble metal interface", Phys. Rev. B 108, L121107/7p (2023).: BL-9B / cite / international coauthor / IF= 3.6
- C. Zhang, T. Shishidou, R. Amano, K. Miyamoto, T. Sayo, C. Shimada, Y. Kousaka, M. Weinert, Y. Togawa, T. Okuda, "Spiral band structure hidden in the bulk chiral crystal NbSi₂", Phys. Rev. B 108, 235164/6p (2023).: BL-9B / cite - / international coauthor / IF= 3.6
 - M. Holtmann, P. Krüger, K. Miyamoto, T. Okuda, K. Shimada, M. Donath, "Surface electronic structure of Re(0001): A spin-resolved photoemission study", Phys. Rev. B 107, 165420/11p (2023).: BL-1,BL-9B / cite 0 / international coauthor / IF= 3.6

- Y. El Halmouch, H. A. H. Ibrahim, N. M. Dofdaa, M. E. M. Mabrouk, M. M. El-Metwally, T. Nehira, K. Ferji, Y. Ishihara, K. Matsuo, M. I. A. Ibrahim, "Complementary spectroscopy studies and potential activities of levan-type fructan produced by Bacillus paralicheniformis ND2", Carbohydr. Polym. **311**, 120743/14p (2023).: BL-12 / cite 4 / international coauthor / IF= 10.2
- Y. Izumi, K. Matsuo, A. Yokoya, "Secondary structural analyses of histone H2A-H2B proteinsextracted from heated cells", Chirality 35, 165-171 (2023).: BL-12 / cite 0 / IF= 1.9
- 11) M. Kumashiro, K. Matsuo, "Characterization of membrane-interaction mechanisms of proteins using vacuum-ultraviolet circular dichroism spectroscopy", Chirality **35**, 826-837 (2023).: BL-12 / cite 0 / IF= 1.9
- 12) M. E. Esmael, M. I. A. Ibrahim, S. A. Aldhumri, R. A. Bayoumi, K. Matsuo, A. M. Khattab, "Lipid-membranes interaction, structural assessment, and sustainable production of polyhydroxyalkanoate by

Priestia filamentosa AZU-A6 from sugarcane molasses", Int. J. Bio. Macromol. **242**, 124721 (2023).: BL-12 / cite 2 / international coauthor / IF= 7.8

13) K. Nishikubo, M. Hasegawa, Y. Izumi, K. Fujii, K. Matsuo, Y. Matsumoto, A. Yokoya, "Structural study of wild-type and phospho-mimic XRCC4 dimer and multimer proteins using circular dichroism spectroscopy", Int. J. Radiat. Bio. 99, 1684-1691 (2023).: BL-12 / cite 0 / IF= 2.8

BL-14

14) M. Alam, D. Kumar, S. Kumar, M. Sawada, K. Shimada, S. Chatterjee, "Maxwell–Wagner Polarization and Mixed Ferromagnetic and Antiferromagnetic State in Eu₂CoMnO₆", Phys. Stat. Solidi B 260, 2300305/8p (2023).: BL-14 / cite 0 / international coauthor / IF= 1.5

LaserARPES

- 15) T. P. Estyunina, A. M. Shikin, D. A. Estyunin, A. V. Eryzhenkov, I. I. Klimovskikh, K. A. Bokai, V. A. Golyashov, K. A. Kokh, O. E. Tereshchenko, S. Kumar, K. Shimada, A. V. Tarasov, "Evolution of Mn₁, xGe_xBi₂Te₄ electronic structure under variation of Ge content", Nanomaterials 13, 2151/13p (2023).: LaserARPES / cite 1 / international coauthor / IF= 5.4
- 16) H. Iwasawa, T. Ueno, Y. Yoshida, H. Eisaki, Y. Aiura, K. Shimada, "Quantitative measure of correlation strength among intertwined many-body interactions", Phys. Rev. Research 5, 043266/10p (2023).: LaserARPES / cite - / IF= 4.3

Light Source

- 17) S. Kera, F. Matsui, K. Tanaka, Y. Taira, T. Araki, T. Ohigashi, H. Iwayama, M. Fujimoto, H. Matsuda, E. Salehi, M, Katoh, "Prospects required for future light-source facilities: a case of UVSOR synchrotron facility", Electron. Struct. 5, 034001/9p (2023).: Light source / cite 0 / IF= -
- 18) E. Salehi, M. Hosaka, M. Katoh, "Time structure of undulator radiation", J. Adv. Simul. Sci. Eng. 10, 164-171 (2023).: Light source / cite 0 / international coauthor / IF= 0.4
- 19) T. Fuji, T. Kaneyasu, M. Fujimoto, Y. Okano, E. Salehi, M. Hosaka, Y. Takashima, A. Mano, Y. Hikosaka, S. Wada, M. Katoh, "Spectral phase interferometry for direct electric-field reconstruction of synchrotron radiation", Optica 10, 302-307 (2023).: Light source / cite 3 / international coauthor / IF= 10.8
- 20) T. Kaneyasu, Y. Hikosaka, S. Wada, M. Fujimoto, H. Ota, H. Iwayama, M. Katoh, "Time domain double slit interference of electron produced by XUV synchrotron radiation", Sci. Rep. 13, 6142/8p (2023).: Light source / cite 0 / IF= 4.9
- 21) Y. Hikosaka, T. Kaneyasu, S. Wada, H. Kohguchi, H. Ota, E. Nakamura, H. Iwayama, M. Fujimoto, M. Hosaka, M. Katoh, "Frequency-domain interferometry for the determination of time delay between two extreme-ultraviolet wave packets generated by a tandem undulator", Sci. Rep. 13, 10292/8p (2023).: Light source / cite 0 / international coauthor / IF= 4.9
- 22) S. Wada, H. Ohta, A. Mano, Y. Takashima, M. Fujimoto, M. Katoh, "Young's double-slit experiment with undulator vortex radiation in the photon-counting regime", Sci. Rep. 13, 22962/8p (2023).: Light source / cite 0 / IF= 4.9

BL-7

23) H. Im, M. Iwataki, M. Tsunekawa, T. Watanabe, H. Sato, M. Nakatake, S.-i. Kimura, "Variation of strong correlation effects in A-site ordered perovskites CaCu₃Ti_{4-x}Ru_xO₁₂: Photoemission and inverse photoemission studies", J. Phys. Soc. Jpn. 92, 044701/4p (2023).: BL-7, IPES / cite 0 / IF= 1.5

24) K. Sumida, S. Higaki, H. Sato, D. Tsuru, K. Miyamoto, T. Okuda, Y. Kuroiwa, C. Moriyoshi, K. Takase, T. Oguchi, A. Kimura, "One-dimensional band structure in quasi-two-dimensional h-Mo4O11 revealed by angle-resolved photoelectron spectroscopy and first-principles ", J. Phys. Soc. Jpn. 92, 084706/6p (2023).: BL-7 / cite 0 / IF= 1.5

BL-11

25) S. Asaoka, T. Endo, Y. Ushihara, A. Umehara, C. Yogi, T. Ohta, S. Hayakawa, N. Shutoh, T. Okuda, "Spatial and temporal distribution of hydrogen sulfide and sulfur species in coastal marine sediments collected from Osaka Bay, Japan", Mar. Chem. 251, 104233/12p (2023).: BL-11 / cite 0 / IF= 3.5

BL-13

26) M. Hirato M. Onizawa, Y. Baba, Y. Haga, K. Fujii, S. Wada and A. Yokoya, "Electronic properties of DNA-related molecules containing a bromine atom", Int. J. Radiat. Biol. 99, 82-88 (2023).: BL-13 / cite 2 / IF= 2.8

Others

- 27) S. Hosokawa, H. Sato, Y. Tezuka, J. I. Adachi, K. Kimura, K. Hayashi, S. Kohara, H. Tajiri, K. Kobayashi, A. Koura, F. Shimojo, "4 Atomic and electronic structures on a mordenite zeolite", e-J. Surf. Sci. Nanotech. 22, 25-31 (2023).: cite 0 / IF= 5.4
- 28) A. El-Maradny, I. M. Radwan, M. Amer, M. A. Fahmy, L. A. Mohamed, M. I. A. Ibrahim, "Spatial distribution, sources and risk assessment of polycyclic aromatic hydrocarbons in the surficial sediments of the Egyptian Mediterranean coast", Mar. Poll. Bull 188, 114658/13p (2023).: cite 5 / international coauthor / IF= 6.5
- 29) R. Z. Xu, X. Du, J. S. Zhou, X. Gu, Q. Q. Zhang, Y. D. Li, W. X. Zhao, F. W. Zheng, M. Arita, K. Shimada, T. K. Kim, C. Cacho, Y. F. Guo, Z. K. Liu, Y. L. Chen, L. X. Yang, "Orbital-selective charge-density wave in TaTe₄", NPJ Quantum Marer. 8, 44/7p (2023).: cite 0 / international coauthor / IF= 6.3
- 30) K. Sumida, Y. Fujita, W. Zhou, K. Masuda, I. Kawasaki, S. Fujimori, A. Kimura, Y. Sakuraba, "Role of onsite Coulomb interactions in the half-metallic Weyl ferromagnet candidate thin-film Co₂FeSi", Phys. Rev. B 108, L241101/6p (2023).: cite - / IF= 3.6
- 31) M. I. A. Ibrahim, X. Solimando, L. Stefan, G. Pickaert, J. Babin, C. Arnal-Herault, D. Roizard, A. Jonquieres, J. Bodiguel, M. Averlant-Petit, "A lysine-based 2:1-[a/aza]-pseudopeptide series used as additives in polymeric membranes for CO₂ capture: synthesis, structural studies, and application", RSC Advances 13, 10051-10067 (2023).: cite 1 / international coauthor / IF= 3.9
- 32) H. Iwasawa, K. Sumida, S. Ishida, P. Le Fèvre, F. Bertran, Y. Yoshida, H.Eisaki, A. F. Santander-Syro, T. Okuda, "Exploring spin-polarization in Bi-based high-Tc cuprates", Sci. Rep. 13, 13451/7p (2023).: cite 0 / international coauthor / IF= 4.9
- 33) S. A. A. Ghani, M. I. A. Ibrahim, M. A. Shreadah, A. A.M. El-Sayed, M. A. Aly-Eldeen, "Ecological risk assessment of selected contaminants in seawater, sediment and some fish species from Alexandria beaches, South-Eastern Mediterranean Sea, Egypt", Environmental Nanotechnology, Monitoring & Management 20, 10873/16p (2023).: cite 0 / international coauthor / IF= -
- 34) H. M. El-Sayed, M. I.A. Ibrahim, A. A. Shagar, A. R. Elgendy, "Geophysical and hydrochemical analysis of saltwater intrusion in El-Omayed, Egypt: Implications for sustainable groundwater management", Egypt. J. Aquat. Res. 49, 478-489 (2023).: cite 2 / international coauthor / IF= 3.8

List of proposals

2017

2017	
17AG001	Satoshi Asaoka : Kobe University Research Center for Inland Seas Identification of sulfur species in marine sediments from Seto Inland Sea using XAFS
17AG002	Reiko Urade : Graduate School of Agriculture, Kyoto University
174 0002	Structurar analysis of food proteins by vacuum unavoiet encurar dienoisin spectoscopy
1/AG003	Photoemission spectroscopy study on electronic behavior of electron carriers doped on the fractured surface of
	oxide single crystals
17AG004	Shaolong He : Ningbo Institute of Industrial Technology, CAS
174 0005	Systematic studies of the metipaly between magnetism and superconductivity in EureAS122 superconductors
1/AG005	Koloni Malsuo : Hirosnima Synchrotron Radiation Center, Hirosnima University
	dichroism
17AG006	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Membrane-interaction study of myelin protein using vacuum-ultraviolet circular dichroism
17AG007	Jun'ichiro Mizuki : School of Science and Technology, Kwansei Gakuin University
	Angle-resolved photoelectron spectroscopy study on Ce1-2-10 systems
17AG009	Hitoshi Yamaoka : RIKEN SPring-8 Center
	Photoelectron spectroscopy study of Yb compounds
17AG010	Baojie Feng : Institute for Solid State Physics, University of Tokyo
	High resolution ARPES study of graphene-like materials
17AG011	Baojie Feng : Institute for Solid State Physics, University of Tokyo
	Spin-ARPES measurements of LnX family materials
17AG012	Shunsuke Tsuda : National Institute for Materials Science
	Photoemission study of multi-layered system of Sr-Cr-O compounds
17AG013	Yasuyuki Maki : School of Science and Engineering, Gunma University
	Effect of molecular weight on the conformational change of galactomannan induced by mixing with xanthan
17AG014	Hyeong-Do Kim: IBS-CCES, Seoul National University
151 0015	Electronic structure of kitaev materials Na ₂ IrO ₃ and L ₁₂ IrO ₃ probed by inverse photoemission spectroscopy
17AG015	Tomohiko Saitoh : Faculty of Science, Tokyo University of Science
174 C016	Electronic structure study of delatossite-type oxides type oxides CuiviO ₂ (M=Min, Fe)
1/AG010	Joseph Shapler : Finders University
1746017	High resolution probing of carbon nanotube energy level structure Vochivati Obtsuba : Spin polarized electronic states on polar surfaces of topological Kondo insulator
1/A001/	Snin-polarized electronic states on polar surfaces of topological Kondo insulator
17AG019	Shini Kuroda · Graduate School of Pure and Applied Sciences University of Tsukuba
1/11001)	ARPES measurements on mixed crystals and hybrid structures of topological crystalline insulator SnTe
17AG020	Hiroaki Anzai : Graduate School of Engineering. Osaka Prefecture University
	Synchrotron radiation photoemission study of organic radical crystal
17AG021	Hiroaki Anzai : Graduate School of Engineering, Osaka Prefecture University
	Scanning tunneling microscopy and spectroscopy of rare-earth compound YbInCu4
17AG022	Yudai Izumi : Hiroshima Synchrotron Radiation Center, Hiroshima University
	VUV-CD spectroscopy of histone-DNA complex
17AG024	Chang Liu : South University of Science and Technology of China
	Direct observation of the node-line semimetallic and topological insulator phases of $CaAgX$ (X = P, As) using
1 - 1	ARPES
17AG026	Takashi Mizokawa : Faculty of Science and Engineering, Waseda University
174 0000	ARPES study of multi-band electron-hole systems in layered chalcogenides
1/AG029	Akiniro ino : Hirosnima Synchrotron Kadiation Center, Hirosnima University
	Study of Cu-site substitution effect by means of high-resolution an-around superconducting-gap mapping of Pi-Sr-Co(Cu, X)-O ₁ (X=Co Ni)
1746030	Koichi Matsuo : Hiroshima Synchrotron Radiation Center Hiroshima University
17A0050	Observation of structural dynamics of mono-saccharides using vacuum-ultraviolet circular dichroism spectroscopy
1746031	Visit value of successful and succes
1/A0031	Spectroscopic study on electronic structures of layered Cr chalcogenides
17AG033	Kentaro Fujiji · National Institutes for Quantum and Radiological Science and Technology
1/110000	VUV-CD measurements of proteins regarding a repair of DNA double strand breakage
17AG034	Takeshi Kondo : The Institute for Solid State Physics, University of Tokyo
	Optimization mechanism of T_c in the multilayered superconductors
17AG035	Osamu Kubo : Graduate School of Engineering, Osaka University
'	Elucidation of electronic band structure of monolayer germanium film
17AG036	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Photoemission and absorption spectroscopies on mineral tetrahedrites Cu ₁₂ Sb ₄ As ₁₃ with metal-semiconductor

	transition
17AG037	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle-resolved photoelectron spectroscopy of Kondo-lattice systems YbNi ₂ X ₂ (X=Ge, Si)
17AG038	M. Zahid Hasan : Princeton University
	A strongly-correlated topological phase of matter in CeSb and CeBi
17AG040	Koji Miyamoto : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Influence of surface reconstruction on Rashba-type spin-split surface states
17AG044	Hitoshi Sato: Hiroshima Synchrotron Radiation Center, Hiroshima University
	Y-substitution effect on electronic state of Kondo insulator YbB_{12}
17AG045	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
17.4 60.46	Magnetic properties of magnetic atoms evaporated on monolayer hexagonal boron nitride
1/AG046	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
174 0040	Magnetic properties of structures of magnetic surface clusters
1/AG049	Elke rabian Schwerz : Arrosinna Synchrouon Radiation Center, Arrosinna University
1746050	Fike Fabian Schwier : Hiroshima Synchrotron Radiation Center, Hiroshima University
17/10050	Probing the surface and bulk electronic states of Nickel(100)
17AG051	Kenya Shimada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	High-resolution angle-resolved photoemission spectroscopy study of Cr covered Fe thin films grown on Cu(001)
17AG052	Shiv Kumar : Hiroshima Synchrotron Radiation Center, Hiroshima University
	ARPES study of Cu-doped topological insulators Bi ₂ Te ₃
17AG053	Daniel S Dessau : University of Colorado, Boulder
	New ARPES methods for determining critical self-energy effects in cuprate superconductors - II
17AG055	Akio Kimura : Graduate School of Science, Hiroshima University
	Unmasking electronic structures protected by non-symmorphic crystal symmetry by synchrotron ARPES
17AG056	Akio Kimura : Graduate School of Science, Hiroshima University
	ARPES of the ternary Heusler-type topological materials
17AG057	Akio Kimura : Graduate School of Science, Hiroshima University
174 0059	Peculiar spin-split surface state and topology of crystals having the same crystal structure as that of LiFeAs
1/AG058	Shin-ichi wada : Graduate School of Science, Hiroshima University
	Evaluation of molecular conductivity in conductive aromatic molecules by means of X-ray absorption and Auger
174 G059	specifoscopy Shin-ichi Wada : Graduate School of Science, Hiroshima University
1/10057	X-ray spectroscopy of gold nanonarticles synthesized by pulsed laser ablation
17AU001	Mario Novak : University of Zagreb
1,110001	Massless Kane electrons in Dirac/Weyl semimetals revisited by low-energy ARPES
17AU003	Shinjiro Hayakawa : Graduate School of Engineering, Hiroshima University
	XAFS characterization of iodine inserted organo-MnO ₂ films
17AU004	Shinya Hosokawa : Graduate School of Science and Technology, Kumamoto University
	Conduction-band electronic states of Mg alloys with long period stacking order II
17AU005	Shinya Hosokawa : Graduate School of Science and Technology, Kumamoto University
	Valence-band electronic states of Mg alloys with long period stacking order III
17AU006	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University
17 411007	Study of inversion symmetric bulk crystals Na3Bi by high resolution spin-resolved photoemission
1/AU00/	Joseph Shapter : Flinders University
17 41 1009	High resolution probing of carbon nanotube energy level structure
1/A0008	Dunijoon Kini . Fonding University of Science and reciniology
17AU009	Takayasu Kawasaki : Infrared Free Electron Laser Research Center Tokyo University of Science
1/110000	Structural analysis of lysozyme by using VUVCD spectroscopy
17AU010	Takayoshi Yokoya : Graduate School of Natural Science and Technology. Okayama University
	Electronic structure study of functional materials at BL-5(FY2017)
17AU011	Kensei Kobayashi : Graduate School of Engineering, Yokohama National University
	Vacuum-ultraviolet circular dichroism analysis of homo-chirality of amino acid thin films emerged from circularly-
	polarized light irradiation
17AU012	Phil King : University of St Andrews
	Detangling orbital textures and circular dichorism of the charge-density wave TMD, VSe ₂
17AU013	Tetsuya Sato : Science and Technology, Keio University
	Observation of d electron quantum-well states in Pd(100) ultrathin films
17AU014	Yudai Izumi: Hiroshima Synchrotron Radiation Center, Hiroshima University
1741016	VUV-CD spectroscopy of a tumor suppressor protein
1/AU015	Ya Feng: Hirosnima Synchrotron Kadiation Center, Hiroshima University
17411017	AKEDS SHUY OF a Dirac Semimetal candidate (PIBI2 Mohammed A.E. Sallam : Alexandria University
1/AU01/	Contributions of anomeric C-nucleoside triazole analogs synchrotron radiation to circular dichroism in vacuum-
	ultraviolet region

17AU018 Yuka Horikawa : Graduate School of Sciences and Technology for Innovation, Yamaguchi University

	The electronic states of D/L amino acid absorbed on WO ₃
17AU019	Shiv Kumar : Hiroshima Synchrotron Radiation Center, Hiroshima University
17.11000	X-ray magnetic circular dichroism study of EU ₂ Ti ₂ O ₇ and hybrid Eu _{2-x} TM _x Ti ₂ O ₇ Pyrochlore
17AU020	Taro Masuda : Graduate School of Agriculture, Kyoto University
	investigation for the activation mechanism of type 3 copper proteins by vacuum ultraviolet circular dichroism
1746021	Specific Scopy Vitao Cui : Institute for Solid State Physics, University of Tokyo
1///0021	The interaction of water and Li ion in hydrate melt studied by soft X-ray absorption spectroscopy
17AU022	Jin-Houg Kim : Advanced Radiation Technology Institute
	Structural changes of histone core proteins by chromatin remodeling in DNA damage response of Arabidopsis
	thaliana
17AU023	Masato Sakano : Graduate School of Engineering, University of Tokyo
	Observation of topological surface state in palladium-bismuth compound superconductor
17AU024	Keun Su Kim : Yonsei University
1	Electron-phonon interaction in surface-doped black phosphorus
T/AU025	Iwao Matsuda : Institute for Solid State Physics, University of Tokyo
17411026	Direct observation of semimetal-to-semiconductor transition in Bi thin films by high-resolution ARPES
17A0020	Growth of magnetic hydrogenated silicene
17BG001	Reiko Urade : Graduate School of Agriculture. Kvoto University
	Structural analysis of plant ER proteins assisting the folding of food proteins by vacuum ultraviolet circular
	dichroism spectroscopy
17BG002	Shinya Yagi : EcoTopia Science Institute, Nagoya University
	Sulfur K-edge NEXAFS measurement for vulcanized squalene
17BG003	Kyunghoi Kim : Pukyong National University
17DC005	Mechanism of phosphate and hydrogen sulfide removal with oyster shells
I/BG005	Construction of electronic structure of oxidized surface on W(100)
17BG007	Nao Tsunoji - Graduate School of Engineering, Hiroshima University
1/2000/	XAFS characterization of transition metal within ordered metal oxide
17BG008	Ya Feng : Hiroshima Synchrotron Radiation Center, Hiroshima University
	ARPES study of a Dirac semimetal candidate : cubic structure of PtBi2
17BG009	Ya Feng : Hiroshima Synchrotron Radiation Center, Hiroshima University
	ARPES study of magnetic hydrogen silicene
17BG010	Yuka Horikawa : Graduate School of Sciences and Technology for Innovation, Yamaguchi University
17DC011	Developments of apparatus for soft X-ray absorption experiments under atmospheric He environment
I/BG011	Satoshi Asaoka : Kobe University Research Center for Inland Seas
17BG012	Shinii Kuroda : Graduate School of Pure and Applied Sciences. University of Tsukuba
1700012	ARPES measurements on mixed crystals and hybrid structures of topological crystalline insulator SnTe
17BG013	Shin-ichi Wada : Graduate School of Science, Hiroshima University
	Evaluation of molecular conductivity in conductive aromatic molecules by means of resonant Auger spectroscopy
17BG014	Shin-ichi Wada : Graduate School of Science, Hiroshima University
	Evaluation of molecular conductivity in conductive aromatic molecules by means of X-ray absorption
17BG015	Baojie Feng : Hiroshima Synchrotron Radiation Center, Hiroshima University
17DC01(ARPES study of the electronic structure of monolayer phosphorus
1/BG010	Spin textures in a monolever forrom canation material
17BG017	Tetsuro Lleno · National Institutes for Quantum and Radiological Science and Technology
1/001/	\mathbf{v}_{i}
	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice
	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice $Ce[Cu_{0.6}Co_{0.4}]_5$
17BG018	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice $Ce[Cu_{0.6}Co_{0.4}]_5$ Alexander Grüneis : Institute of Physics II, University of Cologne
17BG018	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice $Ce[Cu_{0.6}Co_{0.4}]_5$ Alexander Grüneis : Institute of Physics II, University of Cologne Semiconductor to metal transition and spin-orbit coupling in boron doped graphene nanoribbons
17BG018 17BG019	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice $Ce[Cu_{0.6}Co_{0.4}]_5$ Alexander Grüneis : Institute of Physics II, University of Cologne Semiconductor to metal transition and spin-orbit coupling in boron doped graphene nanoribbons Alexander Shikin : Saint Petersburg State University
17BG018 17BG019	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice $Ce[Cu_{0.6}Co_{0.4}]_5$ Alexander Grüneis : Institute of Physics II, University of Cologne Semiconductor to metal transition and spin-orbit coupling in boron doped graphene nanoribbons Alexander Shikin : Saint Petersburg State University In-plane and out-of-plane magnetization in topological insulators and BiTeI doped by magnetic rare-earth metals
17BG018 17BG019	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice $Ce[Cu_{0.6}Co_{0.4}]_5$ Alexander Grüneis : Institute of Physics II, University of Cologne Semiconductor to metal transition and spin-orbit coupling in boron doped graphene nanoribbons Alexander Shikin : Saint Petersburg State University In-plane and out-of-plane magnetization in topological insulators and BiTeI doped by magnetic rare-earth metals (Gd,Dy) indicated by in-plane kII-shift of the Dirac states and opening of the gap at the Dirac point at different
17BG018 17BG019 17BG020	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice $Ce[Cu_{0.6}Co_{0.4}]_5$ Alexander Grüneis : Institute of Physics II, University of Cologne Semiconductor to metal transition and spin-orbit coupling in boron doped graphene nanoribbons Alexander Shikin : Saint Petersburg State University In-plane and out-of-plane magnetization in topological insulators and BiTeI doped by magnetic rare-earth metals (Gd,Dy) indicated by in-plane kII-shift of the Dirac states and opening of the gap at the Dirac point at different magnetic atom concentration Alexander Shikin : Saint Petersburg State University
17BG018 17BG019 17BG020	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice $Ce[Cu_{0.6}Co_{0.4}]_5$ Alexander Grüneis : Institute of Physics II, University of Cologne Semiconductor to metal transition and spin-orbit coupling in boron doped graphene nanoribbons Alexander Shikin : Saint Petersburg State University In-plane and out-of-plane magnetization in topological insulators and BiTeI doped by magnetic rare-earth metals (Gd,Dy) indicated by in-plane kII-shift of the Dirac states and opening of the gap at the Dirac point at different magnetic atom concentration Alexander Shikin : Saint Petersburg State University Analysis of the Dirac cone structure characteristic for topological phase in graphene on Pt(111) by deposition and
17BG018 17BG019 17BG020	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice $Ce[Cu_{0.6}Co_{0.4}]_5$ Alexander Grüneis : Institute of Physics II, University of Cologne Semiconductor to metal transition and spin-orbit coupling in boron doped graphene nanoribbons Alexander Shikin : Saint Petersburg State University In-plane and out-of-plane magnetization in topological insulators and BiTeI doped by magnetic rare-earth metals (Gd,Dy) indicated by in-plane kII-shift of the Dirac states and opening of the gap at the Dirac point at different magnetic atom concentration Alexander Shikin : Saint Petersburg State University Analysis of the Dirac cone structure characteristic for topological phase in graphene on Pt(111) by deposition and intercalation of Bi
17BG018 17BG019 17BG020 17BG021	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice $Ce[Cu_{0.6}Co_{0.4}]_5$ Alexander Grüneis : Institute of Physics II, University of Cologne Semiconductor to metal transition and spin-orbit coupling in boron doped graphene nanoribbons Alexander Shikin : Saint Petersburg State University In-plane and out-of-plane magnetization in topological insulators and BiTeI doped by magnetic rare-earth metals (Gd,Dy) indicated by in-plane kII-shift of the Dirac states and opening of the gap at the Dirac point at different magnetic atom concentration Alexander Shikin : Saint Petersburg State University Analysis of the Dirac cone structure characteristic for topological phase in graphene on Pt(111) by deposition and intercalation of Bi Yang Liu : Zhejiang University
17BG018 17BG019 17BG020 17BG021	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice Ce[Cu _{0.6} Co _{0.4}] ₅ Alexander Grüneis : Institute of Physics II, University of Cologne Semiconductor to metal transition and spin-orbit coupling in boron doped graphene nanoribbons Alexander Shikin : Saint Petersburg State University In-plane and out-of-plane magnetization in topological insulators and BiTeI doped by magnetic rare-earth metals (Gd,Dy) indicated by in-plane kII-shift of the Dirac states and opening of the gap at the Dirac point at different magnetic atom concentration Alexander Shikin : Saint Petersburg State University Analysis of the Dirac cone structure characteristic for topological phase in graphene on Pt(111) by deposition and intercalation of Bi Yang Liu : Zhejiang University Probing correlated topological state in YbPtBi and related compounds
17BG018 17BG019 17BG020 17BG021 17BG022	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice $Ce[Cu_{0.6}Co_{0.4}]_5$ Alexander Grüneis : Institute of Physics II, University of Cologne Semiconductor to metal transition and spin-orbit coupling in boron doped graphene nanoribbons Alexander Shikin : Saint Petersburg State University In-plane and out-of-plane magnetization in topological insulators and BiTeI doped by magnetic rare-earth metals (Gd,Dy) indicated by in-plane kII-shift of the Dirac states and opening of the gap at the Dirac point at different magnetic atom concentration Alexander Shikin : Saint Petersburg State University Analysis of the Dirac cone structure characteristic for topological phase in graphene on Pt(111) by deposition and intercalation of Bi Yang Liu : Zhejiang University Probing correlated topological state in YbPtBi and related compounds Phil King : University of St Andrews
17BG018 17BG019 17BG020 17BG021 17BG022	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice Ce[Cu _{0.6} Co _{0.4}] ₅ Alexander Grüneis : Institute of Physics II, University of Cologne Semiconductor to metal transition and spin-orbit coupling in boron doped graphene nanoribbons Alexander Shikin : Saint Petersburg State University In-plane and out-of-plane magnetization in topological insulators and BiTeI doped by magnetic rare-earth metals (Gd,Dy) indicated by in-plane kII-shift of the Dirac states and opening of the gap at the Dirac point at different magnetic atom concentration Alexander Shikin : Saint Petersburg State University Analysis of the Dirac cone structure characteristic for topological phase in graphene on Pt(111) by deposition and intercalation of Bi Yang Liu : Zhejiang University Probing correlated topological state in YbPtBi and related compounds Phil King : University of St Andrews Spin-orbital textures in non-symmorphic semimetals
17BG018 17BG019 17BG020 17BG021 17BG022 17BG023	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice Ce[Cu _{0.6} Co _{0.4}] ₅ Alexander Grüneis : Institute of Physics II, University of Cologne Semiconductor to metal transition and spin-orbit coupling in boron doped graphene nanoribbons Alexander Shikin : Saint Petersburg State University In-plane and out-of-plane magnetization in topological insulators and BiTeI doped by magnetic rare-earth metals (Gd,Dy) indicated by in-plane kII-shift of the Dirac states and opening of the gap at the Dirac point at different magnetic atom concentration Alexander Shikin : Saint Petersburg State University Analysis of the Dirac cone structure characteristic for topological phase in graphene on Pt(111) by deposition and intercalation of Bi Yang Liu : Zhejiang University Probing correlated topological state in YbPtBi and related compounds Phil King : University of St Andrews Spin-orbital textures in non-symmorphic semimetals Shaolong He : Ningbo Institute of Industrial Technology, CAS
 17BG018 17BG019 17BG020 17BG021 17BG022 17BG023 17BG024 	Probing multiscale fluctuations in spin, orbital, and charge degrees of freedom for a quantum critical Kondo lattice Ce[Cu _{0.6} Co _{0.4}] ₅ Alexander Grüneis : Institute of Physics II, University of Cologne Semiconductor to metal transition and spin-orbit coupling in boron doped graphene nanoribbons Alexander Shikin : Saint Petersburg State University In-plane and out-of-plane magnetization in topological insulators and BiTeI doped by magnetic rare-earth metals (Gd,Dy) indicated by in-plane kII-shift of the Dirac states and opening of the gap at the Dirac point at different magnetic atom concentration Alexander Shikin : Saint Petersburg State University Analysis of the Dirac cone structure characteristic for topological phase in graphene on Pt(111) by deposition and intercalation of Bi Yang Liu : Zhejiang University Probing correlated topological state in YbPtBi and related compounds Phil King : University of St Andrews Spin-orbital textures in non-symmorphic semimetals Shaolong He : Ningbo Institute of Industrial Technology, CAS Investigations of the interplay between magnetism and superconductivity in EuFeAs122 superconductors Yoshibisa Matsumoto : Institute of Innovative Research. Totwo Institute of Technology

	Structural basis for the heat sensitivity of DNA double-strand break repair protein Ku
17BG025	Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology
	VUV-CD measurements of proteins regarding a repair of DNA double strand breakage
17BG026	Teppei Yoshida : Graduate School of Human and Environmental Studies, Kyoto University
	ARPES study of the metal-insulator transition in Ca ₃ Ru ₂ O ₇ induced by Ti-doping
17BG028	Akio Kimura : Graduate School of Science, Hiroshima University
	Surface spin polarization measurement of Dirac line node semimetals studied by spin-resolved ARPES
17BG029	Akio Kimura : Graduate School of Science, Hiroshima University
	Peculiar topology of non-symmorphic crystals revealed by synchrotron radiation ARPES
17BG030	Akio Kimura : Graduate School of Science. Hiroshima University
1,20000	A topology in half-Heusler compounds containing rare-earth elements revealed by synchrotron radiation ARPES
17BG031	Daniel Dessau - University of Colorado, Boulder
1720001	ARPES studies of bandstructure and pairing interactions in new organic high temperature superconductors
17BG032	Shiniiro Havakawa : Graduate School of Engineering Hiroshima University
1700002	Thermal denaturation of rubber and sulfur K-edge XAFS analysis
17BG033	Shiniira Hayakawa : Graduate School of Frage and Frage and Hirashina University
1700000	Developments of simultaneous measurements of VEV and CEV under grazing incidence condition
17BG034	Sudai Izumi - Hiroshima Sunchrotron Radiation Center, Hiroshima Iluiversity
1/00034	VI W CD spectroscopy of structural alterations of histories induced by DNA lasions
170C025	Shinu dagalaya i Graduta Salada Salaga da Tadanalagu Kumanata University
1/00055	Valence band alestranic estates of Mg allow with long pariod stacking order W
1700026	Valence-band electronic states of Mg anoys with long period stacking order 1V
1/60030	ADDS white a final sequence of the second se
1700027	AFKS study of gd-doped topological instalations Bi2 reg and Bi2eeg
1/6003/	Angle vision a photoelectron granting of Vende letting systems VkNik V (V=Co, Si) II
1706028	Angle-resolved photoelectron spectroscopy of Nondo-lattice systems 1 01N12A2(A-Ge, SI) II
1/60036	Construction official on electronic atom of V and clines later VhD
170020	Ca-substitution effect on electronic state of Kondo instantor 100 ₁₂
1/60039	Takayosin tokoya : Oraduate School of Natural Science and Technology, Okayama University
17DC041	Liching Succure Succure Succure De la contra l'international de la contra l'international de la contra la contra de la contra l'international de la contra contra la contr
1/60041	Akinto into : Finosimia Synchronom Radiation Center, Finosimia University Study of Ω_{12} with a substitution effect in $B_{12}^{(2)}$ ($\Omega_{12}^{(2)}$, $X > \Omega_{2}$, $X > \Omega$
	Study of cursite substitution effect in $B_{12}S_{12}Ca(Cu_{1-x}A_x)_{2}O_{8+\delta}(X-Cb, NI)$ by using high-resolution an-around gap
17011001	napping Vai Miramata - Hinshima Sunakustan Badiatian Cantar Hinshima Haiyamiti
1/60001	Spin relatived Dirac on surface state medified by exchange interaction for Ni on W(110)
17BU002	Markus Donath · Wastfälische Wilhelms Universität
170002	Internal of exchange and spin-orbit interaction for interface states in Ni/W(110)
17BU003	Slavomír Nemš ák - Forschungszentrum lülich Germany
1720005	Controlling c-f hybridization in cerium oxide via strain-induced bond length alteration
17BU004	Guodong Liu : Institute of Physics. Chinese Academy of Sciences
	An ARPES study on the new Fermion in ZrTe
17BU005	Guodong Liu : Institute of Physics, Chinese Academy of Sciences
	Direct Experimental Verification on spin-resolved Valley Structure in two-dimensional MX2 (M = Mo, W; X =
	S,Se) semiconductors
17BU006	Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle-resolved photoemission study of $Sm_{1-x}Yb_xB_6$
17BU007	Eike Fabian Schwier : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Correlation effects around the bulk X-point of ferromagnetic Nickel
17BU008	Eike Fabian Schwier : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Symmetry and k-dependence of the self-energy in Ni(100)
17BU009	Eike Fabian Schwier : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Using surface core-level shifts as a local probe of the band bending model in Bi ₂ Se ₃
17BU010	Andrés F. SANTANDER-SYRO : Université Paris-Sud (FR)
	Spin structure of the 2D electron gas at the magnetically tunable EuO/SrTiO ₃ interface
17BU011	Andrev Kamilievich Kaveev : Ioffe Physical-Technical Institute of the Russian Academy of Sciences
	XAS, XMCD and ARPES studies of Co and Co ₄₀ Fe ₄₀ B ₂₀ ultrathin films on Bi ₂ Te ₃ for spintronic applications
17BU012	Masaki Mizuguchi : Institute for Materials Research, Tohoku University
	Magnetic circular dichroism in L1 ₀ -type FeNi ferromagnetic powders
17BU013	Andrey Kamilievich Kaveev : Ioffe Physical-Technical Institute of the Russian Academy of Sciences
	ARPES studies of Co and $Co_{40}Fe_{40}B_{20}$ ultrathin films on Bl_2Ie_3 for spintronic applications
17BU014	Masahiro Hara : Graduate School of Science and Technology, Kumamoto University
	Magnetic property of nickel hydroxide nanosheets
17BU015	Heun Tae Lee : Graduate School of Engineering, Osaka University
17011016	Photoelectron spectroscopy of thin-film beta tungsten
I/RO010	Koloni Matsuo : Hiroshima Synchrotron Kadiation Center, Hiroshima University
1701017	Structural analysis of memorane protein using vacuum-ultraviolet circular dichroism spectroscopy
1/BU01/	Taisuo Ivenira : Oraduale School of Integrated Arts and Sciences, Hirosnima University
	Determination of absolute configurations for chiral allenes by utilizeing vacuum ultraviolet circular dichroism

	(VUVCD)
17BU018	Masahito Niibe : Laboratory of Advanced Science and Technology for Industry, University of Hyogo
	Soft X-ray absorption spectroscopy of organic / inorganic composite perovskite solar cell materials using He pass
17BU019	Kazuyuki Sakamoto : Faculty of Engineering, Chiba University
	Investigation of the electronic structure of MoTe ₂ using micro-ARPES
17BU020	Alexander Shikin : Saint Petersburg State University
	Comparative study of the surface magnetism developed in magnetically-doped and magnetically-ordered
	topological insulators and BiTeI with variation of magnetic atom concentration, stoichiometry and magnetic
	ordering
17BU021	Shiv Kumar : Hiroshima Synchrotron Radiation Center, Hiroshima University
	X-ray magnetic circular dichroism stufy of 0.7BiFeO ₃ -0.3TbMnO ₃ composite
17BU022	Galif Kutluk : School of science, Hoten teachers college
	Resonant photoemission spectroscopy of Ce single crystal film
17BU023	Wien Frank : Synchrotron SOLEIL
	Calibration and standardization comparison
17BU024	Sumera Shimizu : DENSO Corporation
	Electronic Structures of Graphite Electrodes for Vehicle mot (Inverse Photoelectron Spectroscopy)
17BU025	Xingijang Zhou : Institute of Physics, Chinese Academy of Sciences

5 Xingjiang Zhou : Institute of Physics, Chinese Academy of ARPES on Candidates of Double Weyl Fermion Systems

2018

18AG001	Satoshi Asaoka : Kobe University Research Center for Inland Seas
	Adsorption mechanism of hydrogen sulfide on a deodorant for septic tanks
18AG002	Hitoshi Yamaoka : RIKEN SPring-8 Center
	Photoelectron spectroscopy of Yb ₄ TGe ₈ (T=Cr, Mn) and YB _{0.2} Co ₄ Sb ₁₂
18AG003	Hitoshi Yamaoka : RIKEN SPring-8 Center
	X-ray absorption spectroscopy of YbCu _x at Cu-L absorption edge
18AG005	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Magnetic properties of magnetic atoms intercalated under monolayer hexagonal boron nitride
18AG006	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Magnetic properties and structures of magnetic surface clusters formed on fcc(111) metal surfaces
18AG007	Takashi Mizokawa : Faculty of Science and Engineering, Waseda University
	Electronic correlation effect in electron-hole systems with orbital degeneracy
18AG008	Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology
	VUV-CD measurements of DNA repair proteins
18AG009	Shik Shin : Institute for Solid State Physics, University of Tokyo
	Distinguishing the topological band inversion in Fe(Te, Se)
18AG010	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Membrane-interaction study of myelin protein using vacuum-ultraviolet circular dichroism
18AG011	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Observation of structural dynamics of mono-saccharides depending on solvents
18AG012	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Structural analysis of glycoprotein interacted with glycolipid membrane using vacuum-ultraviolet circular
	dichroism
18AG013	Yoshihisa Matsumoto : Institute of Innovative Research, Tokyo Institute of Technology
	Structural basis for the heat sensitivity of DNA double-strand break repair protein Ku
18AG014	Jun-ichi Takahashi: Graduate School of Engineering, Yokohama National University
	Vacuum-ultraviolet circular dichroism analysis of optical activity emergence in amino acid thin films by circularly-
	polarized light irradiation
18AG015	Ya Feng : Hiroshima Synchrotron Radiation Center, Hiroshima University

ARPES study of a Weyl semimetal candidate
18AG017	Baoije Feng : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Experimental discovery of Dirac nodes in single crystal aluminum
18AG018	Baoije Feng : Hiroshima Synchrotron Radiation Center. Hiroshima University
	ARPES study of quasi-free-standing monolayer antimonene
18AG020	Alexander Shikin : Saint Petersburg State University
	Angle-resolved photoemission study of multi-band effects in layered Fe chalcogenide superconductors
18AG021	Yudai Izumi : Hiroshima Synchrotron Radiation Center, Hiroshima University
10110021	VUVCD measurements of methylated histore H3
18AG022	Yudai Izumi : Hiroshima Synchrotron Radiation Center, Hiroshima University
	VUV-CD measurements of histone proteins extracted from DNA-damaged cells
18AG023	Teppei Yoshida : Graduate School of Human and Environmental Studies, Kvoto University
	Electronic structure of $Ca_3(Rut_Ti_2)O_7$ in the vicinity of metal-insulator transition
18AG024	Chang Liu : South University of Science and Technology of China
1011002	Study of bulk and surface electronic states electronic of potential magnetic Weyl semimetals. B-V ₂ OPO ₄ and
	Co ₂ S ₂ Tl, by ARPES and spin-resolved ARPES
18AG026	Ya Feng : Hiroshima Synchrotron Radiation Center, Hiroshima University
10110020	ARPES study of on magnetic hydrogen silicene
18AG027	Shinji Kuroda : Graduate School of Pure and Applied Sciences, University of Tsukuba
	ARPES measurements on mixed crystals and hybrid structures of topological crystalline insulator SnTe
18AG028	Shinya Yagi : EcoTopia Science Institute. Nagoya University
	Study on chemical state of sulfur-including materials by Sulfur K-edge NEXAFS
18AG029	Shiv Kumar : Hiroshima Synchrotron Radiation Center, Hiroshima University
	High-resolution APRS study of gd-doped and intercalated topological insulators Bi2Se3
18AG030	Shaolong He : Ningbo Institute of Industrial Technology, CAS
	ARPES study of the evolution of electronic structures of Yb-doped SmB_6
18AG031	Masato Sakano: Graduate School of Engineering, University of Tokyo
	Spin-polarized electronic structure in chiral crystal structure (II)
18AG032	Shinjiro Hayakawa : Graduate School of Engineering, Hiroshima University
	Development of a circular flow cell for solution and Sulfur K edge XAFS structure analysis of sulfite species in
	aqueous solution
18AG034	Akio Kimura : Graduate School of Science, Hiroshima University
	SR-ARPES study of non-symmorphic Dirac line node materials including rare-earth elements
18AG035	Akio Kimura : Graduate School of Science, Hiroshima University
	SR-ARPES study of half-metallic Co based Heusler alloy single crystal films
18AG036	Akio Kimura : Graduate School of Science, Hiroshima University
	Observation of bulk Dirac cones and surface Fermi arc of chalcopyrite Weyl semimetals
18AG038	Akio Kimura : Graduate School of Science, Hiroshima University
	Synchrotron radiation spin resolved ARPES study of half-metallic Heusler alloy single crystal films
18AG039	M. Zahid Hasan : Princeton University
	Demonstrating the first topological magnet in Co2MnGa using spin-resolved ARPES
18AG040	Shinya Hosokawa : Graduate School of Science and Technology, Kumamoto University
	Conduction-band electronic states of Mg-Zn-Gd alloys with long period stacking order
18AG041	Shinya Hosokawa : Graduate School of Science and Technology, Kumamoto University
	Valence-band electronic states of Mg-Zn-Gd alloys with long period stacking order
18AG042	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University

Study of electronic structure of Mn₃Sn

- 18AG044 Tian Qian : Institute of Physics, Chinese Academy of Sciences Investigating fourfold-degenerate surface state in topological crystalline insulator Sr₂Pb₃
- 18AG045 Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University Study of Bismuthene on SiC by spin-resolved photoemission
- 18AG046 Shin-ichi Wada : Graduate School of Science, Hiroshima University Evaluation of molecular conductivity of aromatic molecules by utilizing resonant Auger spectroscopy
- 18AG047 Shin-ichi Wada : Graduate School of Science, Hiroshima University Evaluation of molecular conductivity of aromatic molecules by utilizing X-ray absorption spectroscopy
- 18AG048 Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University Angle-resolved photoemission study of lapping surface Sm_{1-x}Yb_xB₆
- 18AG049 Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University Angle-resolved photoemission study of FeSi
- 18AG050 Kim, Changyoung : Seoul National UniversitySpin resolved photoemission studies on possible half metallic SrRuO₃ thin film
- 18AU001 Guodong Liu : Institute of Physics, Chinese Academy of Sciences ARPES studies on the electronic structure of 2D layered van der Waals (vdW) ferromagnetic semiconductor CrI₃
- 18AU003 Hiroaki Anzai : Graduate School of Engineering, Osaka Prefecture University
 - Direct observation of singly occupied molecular orbital in organic radical crystals by angle-resolved photoemission spectroscopy
- 18AU004 Hiroaki Anzai : Graduate School of Engineering, Osaka Prefecture University Scanning tunneling microscopy and spectroscopy of rare-earth compound EuPtP
- 18AU005 Osamu Kubo : Graduate School of Engineering, Osaka University
 - Elucidation of electronic band structure of germanene superstructures
- 18AU006 Jin-Hong Kim : Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute Study on structural changes of histone core proteins in Arabidopsis after gamma irradiation
- 18AU007 Yasumasa Hikosaka : Institute of Liberal Arts and Science at University of Toyama Ion time-of-flight mass spectrometry for ion desorption after molecular inner-shell excitation
- 18AU008 Iwao Matsuda: Institute for Solid State Physics, University of Tokyo High-resolution ARPES on electronic states of Bi ultrathin films modulated by substrates
- 18AU009 Galif Kutluk : School of science, Hoten teachers college
- Resonant photoemission spectroscopy of Ce single crystal II
- 18AU010 Atsushi Baba : MILBON Structural analysis of hair protein using vacuum-ultraviolet circular dichroism
- 18AU011 Alexander Shikin : Saint Petersburg State University Comparative study of the surface magnetism developed in V, Gd-doped and BiTeI with variation of magnetic atom concentration, stoichiometry and magnetic ordering at different
- 18AU012 Mohammed A.E. Sallam : Alexandria University Contributions of anomeric configuration of benzimidazole C-nucleosides to vacuum-ultraviolet circular dichroism
- 18AU013 Ya Feng : Hiroshima Synchrotron Radiation Center, Hiroshima UniversityHigh resolution ARPES study of topological semimetals
- 18AU014 Hideaki Iwasawa: Graduate School of Science, Hiroshima University Laser-ARPES study of Dirac line node materials
- 18AU015 Hideaki Iwasawa: Graduate School of Science, Hiroshima University High-resolution ARPES on Sr₂RuO₄ under uniaxial pressure

18AU016	Junfeng He: University of Science and Technology of China
	Electronic structure of electron-doped J=1/2 Mott insulators
18AU017	Shaolong He : Ningbo Institute of Industrial Technology, CAS
	ARPES study of a giant bulk Rashba-like splitting candidate
18AU018	Junfeng He : University of Science and Technology of China
	Nodal Gap in Electron-doped J=1/2 Mott insulators
18AU019	Kazuhiro Hono : Graduate School of Pure and Applied Sciences, University of Tsukuba
	Photoemission spectroscopy study for half-metal Heusler compounds
18AU020	Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology
	Resonant photo-electron spectroscopy of bromo-uracil
18AG021	Alexander Shikin : Saint Petersburg State University
	Energy gap open at the Dirac point and kII-shift of the Dirac cone states generated under laser radiation in V-doped
	topological insulators with different magnetic doping level
18AU022	Sumera Shimizu : DENSO Corporation
	Electronic structure at SiO2/4H-SiC(1-100) interface observed by using angle resolved IPES
18BG001	Takashi Mizokawa : Faculty of Science and Engineering, Waseda University
	Excitonic correlation effect in multi-band superconductors
18BG002	Andrev Kamilievich Kaveev : Ioffe Physical-Technical Institute of the Russian Academy of Sciences
	ARPES studies of ultrathin ferromagnetic films on topological insulators for spintronic applications
18BG003	Oleg E. Tereshchenko : Rzhanov Institute of Semiconductor physics
	Electronic and spin structure of Bi-graphene-like system
18BG004	Shinjiro Hayakawa : Graduate School of Engineering, Hiroshima University
	Polarization dependence of sulfur K-edge XAFS spectra from polythiophene films and the characterization of film
	orientation
18BG005	Takashi Komesu : University of Nebraska-Lincoln
	Catalytic Behavior of MoS ₂ , with Molecular Adsorption
18BG006	Takashi Komesu : University of Nebraska-Lincoln
	Spin Polarized Electronic Structure of Metal Overlayers on Magneto-electric Cr2O3
18BG007	Satoshi Asaoka : Kobe University Research Center for Inland Seas
	Identification of sulfur species in road dust collected from emerging countries in Asaia
18BG008	Nao Tsunoji : Graduate School of Engineering, Hiroshima University
	XAFS characterization of transition metal within ordered metal oxide
18BG009	Yasumasa Hikosaka : Institute of Liberal Arts and Science at University of Toyama
	Ion time-of-flight mass spectrometry for ion desorption after molecular inner-shell excitation II
18BG010	Baojie Feng : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Exploration of three-dimensional Dirac cones in tantalum carbide family materials
18BG011	Ya Feng : Hiroshima Synchrotron Radiation Center, Hiroshima University
	ARPES study of magnetic films under strain
18BG012	Shin-ichi Wada : Graduate School of Science, Hiroshima University
	Evaluation of molecular conductivity of aromatic molecules by utilizing resonant Auger spectroscopy II
18BG013	Shin-ichi Wada : Graduate School of Science, Hiroshima University
	Evaluation of molecular conductivity of aromatic molecules by utilizing X-ray absorption spectroscopy II
18BG014	Akihiro Ino : Department of Education and Creation Engineering, Kurume Institute of Technology
100 001 -	Excitation-energy-dependent photoemission study of electronic structure of Mo alloy superconductors
18BG015	Akihiro Ino : Department of Education and Creation Engineering, Kurume Institute of Technology

Rare-earth-element substutution effect in electronic structure of layered phosphide chalcogenide superconductors

- 18BG016
 Koji Miyamoto : Hiroshima Synchrotron Radiation Center, Hiroshima University

 Spin-polarized Dirac-cone surface state modified by exchange interaction for Nipn W(110)
- 18BG017 Masato Sakano : Graduate School of Engineering, University of Tokyo Topological transition induced by charge density wave in MTe₂(M=Nb, Ta)
- 18BG018 Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology VUV-CD measurements of DNA repair proteins
- 18BG019 Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology Resonant photo-electron spectroscopy of bromo-uracil
- 18BG020 Yoshihisa Matsumoto : Institute of Innovative Research, Tokyo Institute of Technology Analysis of the effects of temperature on the secondary structure of DNA double-strand break repair protein Ku
- 18BG021 Akifumi Higashiura : Graduate School of Biomedical & Health Sciences, Hiroshima University Identification of the interaction sites of viral factory viroplasm for revealing the assembly mechanism
- 18BG022 Gopeshwar Dhar Dwivedi : Department of Physics, National Sun Yat-sen University ARPES study of Mn₃O₄ and Mn_{1.5}Cr_{1.5}O₄ films grown at MgO(001) substrate
- 18BG023 Denis Vyalikh : Donostia International Physics Center (DIPC) Insight into the spin-texture of Shockley and Dirac states handling by competitive spin-orbit and exchange magnetic interactions in GdRh₂Si₂, HoRh₂Si₂, GdIr₂Si₂ and YbIr₂Si₂ materials
- 18BG024
 Ilya Klimovskikh : Saint Petersburg State University

 Spin structure of the gapped Dirac cone of first antiferromagnetic topological insulator MnBi₂Te₄
- 18BG026 Alexander Shikin : Saint Petersburg State University Energy gap open at the Dirac point in Gd- and Mn-doped topological insulators with different magnetic doping level, stoichiometry and localization of the Dirac point relative to the Fermi level for analysis of realization of 2D surface ferromagnetism and its manipulation by laser
- 18BG027 Alexander Shikin : Saint Petersburg State University Resonance photoemission study of the energy gap open at the Dirac point and the reasons of the gap formation in Mn- and Gd-doped magnetic topological insulators
- 18BG028 Yoshihiro Aiura : National Institute of Advanced Industrial Science and Technology
 A photoemission study on gap-state evolution of SrTiO₃(001) surface by in-situ potassium deposition
- 18BG029 Heun Tae Lee : Graduate School of Engineering, Osaka University Photoelectron spectroscopy of thin-film beta tungsten
- 18BG030 Yudai Izumi : Hiroshima Synchrotron Radiation Center, Hiroshima University High resolution ARPES measurement for the contribution of electron-phonon parameter in metal mixed crystal
- 18BG031
 Shiv Kumar : Hiroshima Synchrotron Radiation Center, Hiroshima University

 Electronic band structure and Fermi surface study of BiPd superconductor from ARPES
- 18BG032 Momoko Furuta : MILBON
 - Structural analysis of hair protein denaturation using vacuum-ultraviolet circular dichroism
- 18BG033 Keisuke Fukutani : Institute for Basic Science

High-resolution angle-resolved photoemission studies on the surface of low-dimensional excitonic insulators

- 18BG034 K. Asokan : Inter University Accelerator Centre Electronic and magnetic structures of Iridates using X-ray absorption and X-ray magnetic dichorism based techniques
- 18BG035 Hideaki Iwasawa : Graduate School of Science, Hiroshima University Extraction and evaluation of intrinsic many-body interactions in high-Tc cuprate supercondcutors
- 18BG036 Hideaki Iwasawa : Graduate School of Science, Hiroshima University

	Metal-insulator transition of Mott-insulator Ca ₂ RuO ₄
18BG037	Hideaki Iwasawa : Graduate School of Science, Hiroshima University
	Observation of Rashba splitting in high-Tc cuprate superconductor YBa2Cu3O7
18BG038	Akio Kimura : Graduate School of Science, Hiroshima University
	Synchrotron radiation spin resolved ARPES study of Heusler-type magnetic Weyl semimetals
18BG039	Akio Kimura : Graduate School of Science, Hiroshima University
	SR-ARPES study of non-symmorphic Dirac line node materials including rare-earth elements II
18BG040	Akio Kimura : Graduate School of Science, Hiroshima University
	SR-ARPES study of carrier tuned half-metallic Heusler alloy films
18BG042	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Effects of sugars on structural stability of apo-myoglobin investigated by VUVCD spectroscopy
18BG043	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study on a transition of new Ce compound by mean of angle resolved photoemission spectroscopy
18BG044	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study on metal-semiconductor transition of mineral tetrahedrite $Cu_{12}Sb_4As_{13}$ by mean of photoemission and
	absorption spectroscopies
18BG045	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study on valence transition of YbInCu4 by mean of low-energy angle resolved photoemission spectroscopy
18BG046	Markus Donath : Westfälische Wilhelms-Universität
	Exchange vs. spin-orbit interaction at magnet/heavy-metal interfaces
18BG047	Koji Miyamoto : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Modification of spin-polarized surface state due to a breaking mirror plane
18BG048	Andrev Kamilievich Kaveev : Ioffe Physical-Technical Institute of the Russian Academy of Sciences
	$Cation\ distribution\ and\ magnetic\ properties\ of\ NiFe_2O_4\ nanofilms\ on\ MgO\ and\ SrTiO_3\ substrates:\ XAS\ and\ XMCD$
	soft X-ray studies
18BG049	Yasuyuki Maki : Faculty of Science, Kyushu University
	Measurement of helix amount of partially denatured collagen by vacuum-ultraviolet circular dichroism
18BG050	Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle-resolved photoemission study of FeSi II
18BG051	Yang Lexian : Tsinghua University
	Evolution of heavy fermion states in the valance fluctuating compound EuNi ₂ P _{2-x} As _x
18BG052	Yasuyuki Maki : Faculty of Science, Kyushu University
	Temperature dependence of vacuum-ultraviolet circular dichroism spectra of aqueous hydroxypropyl cellulose
18BU001	Fuminori Katou : Graduate School of Biomedical & Health Sciences, Hiroshima University
	Structural analysis of DNA gyrase inhibitor in Staphylococcus aureus
18BU002	Takashi Tokushima : MAX IV Laboratory, Lund University
	A feasibility stud of the atomic hydrogen cleaning of the carbon contamination on optical elements
18BU003	Ying Jin : National Center for Materials Service Safety, University of Science and Technology Beijing
	Ex-situ/in-situ soft x-ray absorption investigation towards corrosion of Cu and passivation behavior of Ti
18BU004	Kazuhiro Hono : Graduate School of Pure and Applied Sciences, University of Tsukuba
	Spin-resolved photoemission spectroscopy study for half-metal Heusler compounds
18BU005	Alexander Shikin : Saint Petersburg State University
	Anomalously large energy gap open at the Dirac point in new class of magnetically ordered topological insulators
	and temperature dependence of the Dirac cone structure
18BU006	Alexander Shikin : Saint Petersburg State University

Electronic structure and anomalously large energy gap open at the Dirac point in new class of magnetically ordered topological insulators at different temperatures and resonance photoemission study of the Mn-derived states in the region of the gap

- 18BU007 Rohit Medwal : National Institute of Education (NIE), Nanyang Technological University (NTU) Investigation of tunable spin orbit interaction at Rashba hetero-interfaces
- 18BU008Takayoshi Yokoya : Graduate School of Natural Science and Technology, Okayama UniversityElectronic structure study of functional materials at BL-5(FY2018, Latter period)
- 18BU009 Shaolong He : Ningbo Institute of Industrial Technology, CAS ARPES study of the evolution of electronic structures of Yb-doped SmB₆
- 18BU010 Taro Tamada : National Institutes for Quantum and Radiological Science and Technology Spectrum measurement of human de novo evolved gene product NCYM using vacuum-ultraviolet circular dichroism
- 18BU011 Shinichi Tate : Graduate School of Science, Hiroshima University The development of quality check method based on the protein structure
- 18BU012 Sergey Suturin : Ioffe Physical-Technical Institute of the Russian Academy of Sciences XMCD study of the substrate dependent stress induced magnetic anisotropy in epitaxial nanoscale YIG layers
- 18BU013 Shiv Kumar : Hiroshima Synchrotron Radiation Center, Hiroshima University X-ray absorption spectroscopy (XAS) study of Pr-doped La₂CoFeO₆ double perovskite materials

19AG001	Kyunghoi Kim: RIKEN SPring-8 Center
	A study on mechanism of hydrogen sulfide and phosphate removal with oyster shells by XAFS analysis
19AG002	Hitoshi Yamaoka: RIKEN SPring-8 Center
	Angle-resolved photoelectron spectroscopy study on (Ce, La)Ru2Al10 systems
19AG003	Satoshi Asaoka : Kobe University Research Center for Inland Seas
	Chemical composition of calcium phosphate in fertilization pellets produced from methane fermented digestive
	liquid
19AG004	Chaoyu Chen : Southern University of Science and Technology
	Electronic structure of elementary excitation in quantum spin liquid
19AG005	Baojie Feng : Institute of Physics, Chinese Academy of Sciences
	High-resolution ARPES measurements of honeycomb borophene
19AG006	Ya Feng : Ningbo Institute of Industrial Technology, CAS
	ARPES study of silicene
19AG007	Ya Feng : Ningbo Institute of Industrial Technology, CAS
	ARPES study of a Dirac semimetal candidate
19AG008	Ying Jin : National Center for Materials Service Safety, University of Science and Technology Beijing
	Ex-situ/in-situ soft x-ray absorption investigation towards passivation behavior of Ti
19AG009	Shaolong He : Ningbo Institute of Industrial Technology, CAS
	ARPES study of a new type-II Dirac semimetal candidate NiTe ₂
19AG011	Jun-ichi Takahashi : Graduate School of Engineering, Yokohama National University
	Vacuum-ultraviolet circular dichroism analysis of optical activity emergence in amino acid thin films by circularly-
	polarized light irradiation
19AG012	Kenta Kuroda : Institute for Solid State Physics, University of Tokyo
	Antiferromagnetic electronic-structures under devil's staircase in cerium monopnictide

- 19AG013Kaname Kanai : Faculty of Science and Technology, Tokyo University of ScienceElucidation of electronic structure of organometallic layers grown on metal surface
- 19AG014 Chang Liu : Southern University of Science and Technology ARPES study on Zintl phase Ba₃Cd₂As₄ - A proposed topological crystalline insulator protected by C₂ rotational symmetry
- 19AG015 Chang Liu : Southern University of Science and Technology Spin-resolved ARPES measurements on the single-spin Weyl bands in kagome ferromagnet Co₃Sn₂S₂
- 19AG016 Andrev Kamilievich Kaveev : Ioffe Physical-Technical Institute of the Russian Academy of Sciences ARPES studies of the polarization-dependent features of the electronic structure of ultrathin fferromagnetic films grown on the PST and BSTS topological insulators for spintronic applications
- 19AG017 Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University Magnetic properties of magnetic monatomic layers intercalated under monolayer hexagonal boron nitride
- 19AG018
 Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University

 Interlayer magnetic coupling between transition metal layers through monolayer hexagonal boron nitride
- 19AG019 Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University Magnetic properties and structures of magnetic surface clusters
- 19AG020 Kazuhiro Hono : Graduate School of Pure and Applied Sciences, University of Tsukuba Synchrotron radiation spin-resolved ARPES study for thin of half-metal Heusler compounds Co₂FeGa_{0.5}Ge_{0.5}
- 19AG022 Yoshihisa Matsumoto : Institute of Innovative Research, Tokyo Institute of Technology Analysis of the effects of temperature on the secondary structure of proteins involved in DNA damage response and repair
- 19AG023 Satomi Inaba : Japan Synchrotron Radiation Research Institute Solution structures of signaling molecules SH2 domain and its complex analyzed using VUVCD
- 19AG024 Shinji Kuroda : Graduate School of Pure and Applied Sciences, University of Tsukuba ARPES measurements on mixed crystals of topological crystalline insulator SnTe
- 19AG025 Yudai Izumi : Hiroshima Synchrotron Radiation Center, Hiroshima University VUV-CD spectroscopy of histone proteins extracted from human cancer cells
- 19AG026 Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University Relationship between structural parameters of sugars and structural stability of proteins
- 19AG027 Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University Interaction study of MBP fragment and liposome membrane
- 19AG028 Takashi Mizokawa : Faculty of Science and Engineering, Waseda University Unusual thermoelectric effect and excitonic correlation in layered chalcogenides/pnictides
- 19AG029Masaru Kato : Faculty of Env.Earth Science, Hokkaido UniversityObservation of electronic states of monolayer graphene on metals
- 19AG030 Shin-ichi Wada : Graduate School of Science, Hiroshima University Substitution effect of molecular conductivity probed by resonant Auger spectroscopy
- 19AG031 Shin-ichi Wada : Graduate School of Science, Hiroshima University Ion desorption of cor-excited organic monolayers using pulsed-HV time-of-flight mass spectrometer
- 19AG032
 Naoki Ishimatsu : Graduate School of Science, Hiroshima University

 XMCD study on temperature dependence of Gd and Co magnetic moments in Laves phase hydride GdCo₂H₃
- 19AG033 Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology VUV-CD measurements of DNA repair proteins
- 19AG034 Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology Resonant photo-electron spectroscopy of bromo-uracil

19AG035	Yasumasa Hikosaka : Institute of Liberal Arts and Science at University of Toyama
	Ion time-of-flight mass spectrometry for ion desorption after molecular inner-shell excitation III
19AG036	Atsushi Baba : MILBON
	Structural analysis of hair protein using vacuum-ultraviolet circular dichroism
19AG037	Masato Sakano : Graduate School of Engineering, University of Tokyo
	Topological transition induced by charge density wave in NbTe2
19AG038	Shinjiro Hayakawa : Graduate School of Engineering, Hiroshima University
	Basic evaluation of beamline performance for beamline sophistication
19AG039	Takayoshi Yokoya : Graduate School of Natural Science and Technology, Okayama Unive
	Micro ARPES study of layered transition metal nitride TiNCl
19AG040	M. Zahid Hasan : Princeton University
	Spin Texture and Topology of a Ferromagnetic Weyl Semimetal, Co ₃ Sn ₂ S ₂
19AG041	Hideaki Iwasawa : Graduate School of Science, Hiroshima University
	High-resolution ARPES on Sr ₂ RuO ₄ under uniaxial pressure II
19AG042	Hideaki Iwasawa : Graduate School of Science, Hiroshima University
	Uncovering unusual electronic states in high-Tc cuprate superconductor La _{2-x} Sr _x CuO ₄
19AG043	Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle-resolved photoemission study of FeSi[110]
19AG044	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study on valence transition of YbInCu4 by mean of low-energy angle resolved photoemission spectroscopy II
19AG045	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study on metal-semiconductor transition of mineral tetrahedrite Cu ₁₂ As ₄ As ₁₃ by mean of photoemission and
	absorption spectroscopies
19AG046	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study on a transition of new Ce compound by mean of angle resolved photoemission spectroscopy II
19AG047	Takashi Tokushima : MAX IV Laboratory, Lund University
	A feasibility stud of the atomic hydrogen cleaning of the carbon contamination on optical elements 2
19AG048	Alexander Shikin : Saint Petersburg State University
	Details of electronic structure of antiferromagnetic magnetically-ordered topological insulators of different
	stoichiometry and their modification with temperature in the region of the Neel temperature
19AG049	Alexander Shikin : Saint Petersburg State University
	Comparative ARPES analysis of electronic structure modification of the Cr- and Gd-doped topological insulators
	under synchrotron and laser photoexcitation
19AG050	Vladimir Andreevich Golyashov : Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the
	Russian Academy of Sciences
	ARPES study of the emerging topological states on the (111) surface of the MBE grown In-doped $Pb_xSn_{1-x}Te$ thin
	films with compositions outside topological crystalline insulator region.
19AG051	Guodong Liu : Institute of Physics, Chinese Academy of Sciences
	A study of layer-dependent electronic structure on the new nodal-line ferromagnetic semimetal Fe3GeTe2
19AG052	Akio Kimura : Graduate School of Science, Hiroshima University
	Observation of surface orbital textures in antiferromagnetic topological insulators
19AG053	Akio Kimura : Graduate School of Science, Hiroshima University
	Angular and orbital resolved ARPES of Dirac materials that belong to non-symmorphic space group
19AG054	Akio Kimura : Graduate School of Science, Hiroshima University

19AG055	Mario Novak : University of Zagreb
	Revealing "side surface states" and bulk states of the topological Dirac line-node semimetals ZrSiS/HfSiS
19AG056	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study of spin-electronic states of topological materials in the temperature-induced t phase transition
19AG057	Eike Fabian Schwier : Hiroshima Synchrotron Radiation Center, Hiroshima University
	High-resolution ARPES investigation of the herringbone reconstruction on Au(111)
19AG058	Baojie Feng : Institute of Physics, Chinese Academy of Sciences
	ARPES measurements of bulk and single-layer ruthenium chloride
19AU001	Ritsuko Eguchi: Graduate School of Natural Science and Technology, Okayama University
	Study of the electronic structure of AgxBi ₂ Se ₃ by Micro ARPES
19AU002	Chang Liu : Southern University of Science and Technology
	High resolution laser-ARPES study on magnetic topological insulators MnBhTe4 and MnBi ₄ Te7
19AU003	Turgut Yilmaz : National Synchrotron Light Source II, Brookhaven National Laboratory
	Angle resolved photoemission study of Cr-doped Bi2Se3 to search for the quantum anomalous Hall state
19AU004	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Exploration of target materials for out-of-plane spin detection
19AU005	Shin Imada : College of Science and Engineering, Ritsumeikan University
	Core-level MCD of transition metal -Mn Sb half Heusler ferromagnets
19AU006	Atushi Yamasaki : Faculty of Science and Engineering, Konan University
	Electronic structures of Mn-based oxypnictides studied by photoemission spectroscopy
19AU007	Chaoyu Chen : Southern University of Science and Technology
	Spatial resolved Laser-ARPES study on magnetic topological insulators Mn ₂ Bi ₂ Te ₅ , doped
19AU008	Kaname Kanai : Faculty of Science and Technology, Tokyo University of Science
	Elucidation of electronic structure of organometallic layers grown on metal surface
19AU009	Kazuhiro Hono : Graduate School of Pure and Applied Sciences, University of Tsukuba
	The observation of the composition dependance of the electronic in half-metal Heusler alloy $Co_2Fe(Ga_{0.5}Ge_{0.5})$
19BG001	Shinya Yagi : EcoTopia Science Institute, Nagoya University
	Chemical state characterization of vulcanized materials by Sulfur K-edge NEXAFS
19BG002	Hitoshi Yamaoka : RIKEN SPring-8 Center
	Photoelectron spectroscopy of Yb ₄ TGe ₈ (T=Cr, Mn) II
19BG003	Takashi Mizokawa : Faculty of Science and Engineering, Waseda University
	Topological band structure of chiral Ir compounds
19BG004	Shin-ichi Wada : Graduate School of Science, Hiroshima University
	Substitution effect of molecular conductivity probed by resonant Auger spectroscopy II
19BG005	Shin-ichi Wada : Graduate School of Science, Hiroshima University
	Ion desorption of core-excited organic monolayers using pulsed-HV time-of-flight mass spectrometer II
19BG006	Chaoyu Chen : Southern University of Science and Technology
	Electronic structure and spin texture determination of magnetic Weyl semimetals
19BG007	Baojie Feng : Institute of Physics, Chinese Academy of Sciences
	Investigation of band structures of tin oxide
19BG009	Shinjiro Hayakawa : Graduate School of Engineering, Hiroshima University
	Sulfur K-edge XAFS analysis of acid decomposition of diethyl-dithio carbamate (DDTC)
19BG010	Yasumasa Hikosaka : Institute of Liberal Arts and Science at University of Toyama
	Core-hole decay processes in molecules adsorbed on surface
19BG011	Satoshi Asaoka : Kobe University Research Center for Inland Seas

	Identification of sulfur species in marine sediments from western part of Seto Inland Sea, Japan using XAFS
19BG012	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study of spin-electronic states of High Tc superconductors Bi2212, Bi2201
19BG013	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Experimental verification of Chirality Induced Spin Selectivity (CISS) effect on Chiral molecule
19BG014	Kenya Shimada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Uncovering nonsymmorphic symmetry protected hidden spin polarization in inversion-symmetric bulk BiOI
19BG015	Teppei Yoshida : Graduate School of Human and Environmental Studies, Kyoto University
	Observation of the Mott transition for Ca ₃ Ru _{2-x} Ti _x O ₇ studied by ARPES
19BG016	Daiki Ootsuki : Graduate School of Human and Environmental Studies, Kyoto University
	ARPES study of the metal-insulator transition in Ru pnictides
19BG017	Hideaki Iwasawa : Graduate School of Science, Hiroshima University
	High-resolution ARPES on Sr ₂ RuO ₄ under uniaxial pressure III
19BG018	Hideaki Iwasawa : Graduate School of Science, Hiroshima University
	Quantitative evaluation of low to high energy-scale interactions in high-Tc cuprate superconductors
19BG019	Naoki Ishimatsu : Graduate School of Science, Hiroshima University
	XMCD study on temperature dependence of Gd and Co magnetic moments in Laves phase hydride GdCo2H3
19BG020	Yudai Izumi : Hiroshima Synchrotron Radiation Center, Hiroshima University
	VUV-CD measurements of Heat-stressed histone proteins
19BG021	Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology
	VUV-CD measurements of DNA repair proteins
19BG022	Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology
	Resonant photo-electron spectroscopy of bromo-uracil
19BG023	Yoshihisa Matsumoto : Institute of Innovative Research, Tokyo Institute of Technology
	Analysis of the effects of temperature on the secondary structure of proteins involved in DNA damage response
	and repair
19BG024	Shaolong He : Ningbo Institute of Industrial Technology, CAS
	ARPES study of type-II Dirac points in NiTe ₂
19BG025	Shaolong He : Ningbo Institute of Industrial Technology, CAS
	ARPES study of type-II nodal loop in trigonal layered PtBi2
19BG026	Markus Donath : Westfälische Wilhelms-Universität
	Ultrathin ferromagnetic films on spin-orbit-influenced metals: Interplay between exchange and spin-orbit
	interaction
19BG027	Yasuyuki Maki : Faculty of Science, Kyushu University
	Secondary-structure analysis of denatured collagen by vacuum-ultraviolet circular dichroism
19BG028	Ya Feng : Ningbo Institute of Industrial Technology, CAS
	ARPES study of silicon nano-ribbons
19BG029	Takashi Komesu : University of Nebraska-Lincoln
	The electronic structure investigation on Pd doped SrIrO ₃ thin film
19BG031	Shilong Wu : University of Cologne
	Band structure investigation of Iron/MoS2 interfaces
19BG032	Jun-ichi Takahashi : Graduate School of Engineering, Yokohama National University
	Vacuum-ultraviolet circular dichroism analysis of optical activity emergence in amino acid thin films by circularly-
	polarized light irradiation
19BG033	Mario Novak : University of Zagreb

ARPES study of non-uniform charge transfer and circular dichroism in Vanadium intercalated NbS2

- 19BG034 Hemian Yi : The Pennsylvania State University Exploring the topological superconductivity in the heterostructures of topological insulator grown on NbSe₂ thin films
- 19BG035 Tian Qian : Institute of Physics, Chinese Academy of Sciences ARPES investigation of new type of topological crystalline insulator Ba₃Cd₂As₄
 19BG036 Shin Imada : College of Science and Engineering, Ritsumeikan University
- Angle-resolved photoemission and kz dispersion of half-metallic NiMnSb
- 19BG037 Shin Imada : College of Science and Engineering, Ritsumeikan University Determination of spin and orbital quantum states of the surface electronic state of Bi (111)
- 19BG038 Hiroaki Yoshida : Graduate School of Science, Hiroshima University Soft X-ray absorption spectra of copper ion complexes included in cyclodextrin
- 19BG039
 Hiroaki Yoshida : Graduate School of Science, Hiroshima University

 Electronic states of Lipoic acid and related molecules included in cyclodextrin
- 19BG040 Hiroaki Yoshida : Graduate School of Science, Hiroshima University Circular dichroism of cyclodextrin and lipoic acid included in cyclodextrin
- 19BG041
 Turgut Yilmaz : National Synchrotron Light Source II, Brookhaven National Laboratory

 Interface electronic structure of Bi₂Se₃ / VSe₂ heterostructure
- 19BG042Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima UniversityStudy on electronic structure of YbInCu_{5-x}Al_x by mean of low-energy photoemission spectroscopy
- 19BG043 Kazuhiro Hono : Graduate School of Pure and Applied Sciences, University of Tsukuba The elucidation of spin-polarized electronic structure of half-metal Heusler alloy Co₂FeGa_{0.5}Ge_{0.5}/Ag, NiAl interfaces
- 19BG044 Chaoyu Chen : Southern University of Science and Technology Electronic structure of elementary excitation in quantum spin liquid candidate 1T-TaS₂
- 19BG045 Masato Sakano : Graduate School of Engineering, University of Tokyo Spin-polarized electronic structure in chiral crystal structure (II)
- 19BG046 Keiki Fukumoto : KEK Estimation of energy levels in high efficiency organic electroluminescence materials
- 19BG047 Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
- Structural change of oligopeptide induced by membrane interaction
- 19BG048 Mario Novak : University of Zagreb
 - Detecting the surface states of the topological Dirac line-node semimetals HfSiS on the (100) surface
- 19BG049 Akio Kimura : Graduate School of Science, Hiroshima University Exploring an axion insulator phase in Eu based antiferromagnetic materials
- 19BG050 Akio Kimura : Graduate School of Science, Hiroshima University Unveiling surface Fermi arcs and their magnetization direction dependent spin textures of the Weyl ferromagnetic alloy films
- 19BG051 Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University Angle-resolved photoemission study of rapping surface SmB₆[110]
- 19BG052 Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University Spin and angle resolved photoemission study of FeSi
- 19BG053 Akio Kimura : Hiroshima Synchrotron Radiation Center, Hiroshima University High-resolution ARPES study of BiSbTe3 and intercalated topological insulators Bi₂Se₃
- 19BU001 Hitoshi Suzuki : Graduate School of Advanced Sciences of Matter, Hiroshima University

	Structural analysis of graphene nanomesh fabricated by bottom-up method on Cu surface
19BU002	Chang Liu : Southern University of Science and Technology
	High resolution ARPES study on magnetic topological insulators Mn(Bi _{1-x} Sb _x) ₂ Te ₄
19BU003	Masaru Kato : Faculty of Env.Earth Science, Hokkaido University
	Understanding interactions between monolayer graphene and metal supports
19BU004	Martin Andresson : Chalmers University of Technology
	Far UV-CD spectroscopy of protein-nanomaterials interaction
19BU005	Chaoyu Chen : Southern University of Science and Technology
	Electronic structure of the parent compound of superconducting infinite-layer nickelates by XPS, IPES and XAS
19BU006	K. Asokan : Inter University Accelerator Centre
	Electronic and magnetic structures of Iridates using X-ray absorption and X-ray magnetic dichorism based
	techniques
19BG007	Masahiro Tsujimoto : Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
	Transmission curve measurement of the vacuum window installed in the X-ray astronomy satellite
19BG008	Artem Rybkin : Saint Petersburg State University
	Laser-ARPES measurements of interface states in Graphene/Au/Co system with loop dislocation network
19BU009	Arghya Taraphder : Indian Institute of Technology Kharagpur
	Instabilities and their competition in doped or intercalated VSe ₂
19BU010	Friedrich Reinert : Julius-Maximilians-Universität Würzburg
	Probing the bulk and surface signatures of the time-reversal breaking in the electronic structure of the magnetically
	doped topological insulator V: (Bi, Sb) ₂ Te ₃ with high resolution UV-ARPES
19BU011	Ken Terao : Graduate School of Science, Osaka University
	Conformational change of double helical xanthan in aqueous solution
19BU012	Chang Liu : Southern University of Science and Technology
	High resolution ARPES study on magnetic topological insulators Mn(Bi1-xSbx)2Te4
19BU013	Atsushi Baba : MILBON
	Visualization of denaturation process of hair cross section by hydrogen peroxide using vacuum ultraviolet circular
	dichroism
19BU014	Jens Ruediger Stellhorn : Graduate School of Engineering, Hiroshima University
	Structure of a novel amorphous organic-inorganic hybrid tin cluster exhibiting nonlinear optical effects by Sn
	XAFS measurements

20AG001	Artem Rybkin : Saint Petersburg State University
	Topological protected states hosted by loop dislocation network at the interface of Au monolayer and Co substrate
20AG003	Chaoyu Chen : Southern University of Science and Technology
	Electronic structure and spin polarization of magnetic Weyl semimetals candidate Sm2CuGe6 and Sm2PdGe6
20AG004	Ke Deng : Southern University of Science and Technology
	Revealing electronic structure of n-doped axion insulator EuIn ₂ As ₂
20AG005	Cai Liu : Southern University of Science and Technology
	Electronic structure and spin polarization of quantum spin liquid candidates Na ₂ IrO ₃ and Li ₂ IrO ₃
20AG007	Baojie Feng : Institute of Physics, Chinese Academy of Sciences
	ARPES study of the electronic structure of crystalline ice
20AG008	Baojie Feng : Institute of Physics, Chinese Academy of Sciences

ARPES study of a two-dimensional topological insulator Andrev Kamilievich Kaveev : Ioffe Physical-Technical Institute of the Russian Academy of Sciences 20AG009 ARPES studies of the band gap opening near the Dirac point in Ferromagnetic/ topological insulator system based on Se-depleted substrates 20AG010 Andrev Kamilievich Kaveev : Ioffe Physical-Technical Institute of the Russian Academy of Sciences XAS and XMCD studies of crystal field symmetry of Co and Mn impurities in multi-compound topological insulators 20AG011 Satoshi Asaoka : Kobe University Research Center for Inland Seas Adsorption mechanisms of nutrients onto filtration media for septic tanks 20AG012 Nao Tsunoji : Graduate School of Engineering, Hiroshima University XAFS characterization of transition metal and halogen atom in ordered nano-metal oxide 20AG013 Shaolong He : Ningbo Institute of Industrial Technology, CAS ARPES study of heavy Weyl fermion semimetal 20AG014 Shaolong He : Ningbo Institute of Industrial Technology, CAS ARPES study of non-symmorphic topological Dirac Insulators 20AG015 Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology VUV-CD measurements of DNA repair proteins 20AG016 Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology Resonant photo-electron spectroscopy of bromo-uracil 20AG017 Hiroaki Anzai : Graduate School of Engineering, Osaka Prefecture University Measurements of heavy-fermion bands in the rare-earth compounds YbAgCu4 20AG018 Hiroaki Anzai : Graduate School of Engineering, Osaka Prefecture University Temperatere dependence of the Kondo resonance peak in photoemission spectra of Yb_xCu₄ (X=Ag, Cd, In, and Sn) 20AG019 Masato Sakano : Graduate School of Engineering, University of Tokyo Direct observation of electronic structure with coupled spin and valley degrees of freedom in bi-layer WSe2 flake 20AG020 Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University Study of spin-electronic states of High Tc superconductors Bi2212, Bi2201 and YBCO 20AG021 Xingjiang Zhou : Institute of Physics, Chinese Academy of Sciences Micro-ARPES study on the free standing single layer FeSe films 20AG022 Shinji Kuroda : Graduate School of Pure and Applied Sciences, University of Tsukuba ARPES measurements on mixed crystals of topological crystalline insulator SnTe 20AG023 Shinya Hosokawa : Graduate School of Science and Technology, Kumamoto University Valence-band electronic states of Gd-TM metallic glass alloys having thermal rejuvenation effect Shinya Hosokawa : Graduate School of Science and Technology, Kumamoto University 20AG024 Conduction-band electronic states of Gd-TM metallic glass alloys having thermal rejuvenation effect Takeshi Kondo : The Institute for Solid State Physics, University of Tokyo 20AG025 T_c optimization mechanism for comparative study in the multilayered superconductors 20AG026 Teppei Yoshida : Graduate School of Human and Environmental Studies, Kyoto University Observation of impurity effect and metal-insulator transition for transition for Ca₃Ru_{2-x}Ti_xO₇ studied by ARPES 20AG027 Hidetoshi Miyazaki : Department of Physical Science and Engineering, Nagoya Institute of Technology Direct observation of electronic structure of Heusler-type Fe2VAl alloy studied by three-dimensional angleresolved photoemission spectroscopy Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University 20AG028 Electronic structure of chromium oxide grown on graphene

20AG029	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Magnetic properties at an interface between magnetic monatomic layers and hexagonal boron nitride
20AG030	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Magnetic coupling between transition metal layers through monolayer hexagonal boron nitride
20AG031	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Magnetic properties and structures of magnetic surface clusters
20AG032	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Soft X-ray absorption spectroscopy for chromium oxide grown on graphene
20AG033	Naoyuki Maejima : College of Science, Rikkyo University
	Magnetic property analysis of Ni ₂ P thin film on Fe ₂ P(10-10)
20AG034	Jens Ruediger Stellhorn : Graduate School of Engineering, Hiroshima University
	Structure of a novel amorphous organic-inorganic hybrid tin cluster exhibiting nonlinear optical effects by low-
	energy XAFS measurements
20AG035	Yeonjin Yi : Yonsei University
	First determination of full three-dimensional electronic structure and tests on Rashba effect in halide perovskites
20AG037	Shin-ichi Wada : Graduate School of Science, Hiroshima University
	Evaluation of molecular conductivity probed by resonant Auger spectroscopy
20AG038	Shin-ichi Wada : Graduate School of Science, Hiroshima University
	Evaluation of molecular conductivity probed by soft X-ray absorption spectroscopy
20AG039	Yasumasa Hikosaka : Institute of Liberal Arts and Science at University of Toyama
	Ion time-of-flight mass spectrometry for ion desorption after molecular inner-shell excitation
20AG040	Yasuyuki Maki : Faculty of Science, Kyushu University
	Gelation process of gelatin containing sugars studied by ultra-violet circular dichroism
20AG041	Hu Miao : Oak Ridge National Laboratory
	Origin of the gapless surface state in magnetic topological insulator Mn(Bi,Sb) ₂ Te ₄
20AG042	Yoshihisa Matsumoto : Institute of Innovative Research, Tokyo Institute of Technology
	Analysis of the mechanisms for the combinatorial effects of radiation and hyperthermia based on the secondary
	structure of DNA repair proteins
20AG043	Yudai Izumi : Hiroshima Synchrotron Radiation Center, Hiroshima University
	VUV-CD spectroscopy of chromatin
20AG044	Shinya Nakashita : Graduate School of Engineering, Hiroshima University
	Utilization of oyster shells and coal bottom ash mixture for restoration of coastal environment
20AG045	Tian Qian : Institute of Physics, Chinese Academy of Sciences
	Exploring connection of Fermi arcs and helical surface states in chiral crystal CoSi
20AG046	Tian Qian : Institute of Physics, Chinese Academy of Sciences
	Low temperature and Spin ARPES investigation of possible nodal surface in EuB ₆
20AG047	Rohit Medwal : National Institute of Education (NIE), Nanyang Technological University (NTU)
	Investigation of the modified Dirac cone in graphene interfacing heavy metal and ferromagnets for tunable spin
	orbit interaction
20AG049	Shinjiro Hayakawa : Graduate School of Engineering, Hiroshima University
	High sensitive determination of film orientation of poly-thiophene films using conversion electron yield XAFS
	measurements
20AG050	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	VUVCD measurements of monosaccharides
20AG051	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University

	Structural stability of proteins induced by mono-saccharides
20AG052	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Interaction study of MBP and liposome membrane using LD spectroscopy
20AG053	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle resolved photoemission spectroscopy of valence transition compounds YbInCu4
20AG054	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study on c-f hybridization of YbCu _{5-x} Al _x by observation of the Kondo peak
20AG055	Hiroaki Yoshida : Graduate School of Science, Hiroshima University
	Comparison of soft X-ray absorption spectra of transition metal sulfate
20AG056	Hiroaki Yoshida : Graduate School of Science, Hiroshima University
	Electronic states of dihydrolipoic acid included in cyclodextrin
20AG057	Akio Kimura : Graduate School of Science, Hiroshima University
	Visualizing surface spin textures of the Heusler-type Weyl ferromagnetic alloys exhibiting a giant anomalous
	Nernst effect
20AG058	Akio Kimura : Graduate School of Science, Hiroshima University
	Exploring a magnetic topological insulator phase in Eu based antiferromagnetic materials
20AG060	Naoki Ishimatsu : Graduate School of Science, Hiroshima University
	XMCD study on temperature dependence of Gd and Co magnetic moments in Laves phase hydride GdCo2H3
20AG062	Chang Liu : Southern University of Science and Technology
	High resolution ARPES study on magnetic topological insulators Mn(Bi1-xSbx)4Te7
20AG063	Chang Liu : Southern University of Science and Technology
	High resolution ARPES study on magnetic topological insulators Mn(Bi _{1-x} Sb _x) ₂ Te ₄
20AG064	Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University
	ARPES study of 3d Kondo insulator FeSi
20AG065	Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle resolved photoemission study of Y _{1-x} Ca _x TiO ₃
20AU001	Masayuki Takahashi : School of Life Science and Technology, Tokyo Institute of Technology
	DNA biding of RecA recombinase under molecular crowing conditions
20AU002	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	ARPES measurement of interface electronic structures between Cr ₂ O ₃ overlayers and graphene grown on Ni(111)
	surface
20AU003	Tetsuji Sekitani : Graduate School of Advanced Science and Engineering, Hiroshima University
	Study of nanocarbon adsorbed on self-assembled monolayer using NEXAFS and XPS
20AU004	Jun Maruyama : Osaka Research Institute of Industrial Science and Technology
	Vacuum ultraviolet circular dichroism spectroscopy for carbon nanotube modified with helically aligned nanopores
20AU005	Toshirou Hata : Graduate School of Advanced Science and Engineering, Hiroshima University
	Evaluation of the bio-mediated calcium carbonate into the soil pore with XAFS analysis
20AU006	Markus Donath : University of Münster
	Spin-orbit-induced splitting of the Tamm surface state of Re(0001)
20AU007	Shiv Kumar : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Band structure engineering in topological semimetal candidate CaAuAs
20AU008	Munisa Nurmamat : Graduate School of Advanced Science and Engineering, Hiroshima University
	Polarization-dependent ARPES studies on type-II Dirac semimetal NiTe ₂
20AU009	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	Low energy ARPES of Eu based antiferromagnetic topological insulator candidate

- 20AG010 Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University Angle-resolved photoelectron spectroscopy of strongly correlated materials with odd parity order
- 20AU011 Chang Liu : Southern University of Science and Technology Probing a new type of spin-splitting effect in antiferromagnets
- 20AU012 Xingjiang Zhou : University of Chinese Academy of Sciences Band Structure Investigation of iron superconductor Ba_{0.6}K_{0.4}Fe₂As₂
- 20AU013 Jun Maruyama : Osaka Research Institute of Industrial Science and Technology Sensitivity enhancement of vacuum ultraviolet circular dichroism spectroscopy for carbon nanotube modified with helically aligned nanopores
- 20AU014 Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
- Analysis of membrane-bound conformation of Magainin2
- 20AU015 Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology Structural analysis α-synuclein interacted with membrane
- 20AU016 Susumu Mineoi : Graduate School of Advanced Science and Engineering, Hiroshima University Development of degradation analysis methods of functional materials for automobiles by fluorescence and conversion electron yield XAFS measurements
- 20AU017 Shilong Wu : University of Chinese Academy of Sciences Spin-ARPES study of topological band structures in Ca₂Pd₃Sb₄
- 20AU018 Kenya Shimada : Hiroshima Synchrotron Radiation Center, Hiroshima University High-resolution ARPES of heavily overdoped Bi2201: evaluation of coupling parameters
- 20AU019 Kenya Shimada : Hiroshima Synchrotron Radiation Center, Hiroshima University ARPES study of the topological surface state in single Sb₂(Se,Te)₃ crystals

21AG001	Toshirou Hata : Graduate School of Advanced Science and Engineering, Hiroshima University
	Evaluation of the bio-mediated calcium carbonate into the soil pore with XAFS analysis
21AG002	Yuji Muraoka : Graduate School of Natural Science and Technology, Okayama University
	Verification of room temperature ferromagnetic property in Q-carbon by using X-ray MCD method
21AG003	Hitoshi Yamaoka : RIKEN SPring-8 Center
	Angle-resolved photoelectron spectroscopy study on (Ce, La)Ru ₂ Al ₁₀ systems
21AG004	Baojie Feng : Institute of Physics, Chinese Academy of Sciences
	Topological band structure of a breathing Kagome lattice
21AG005	Satoshi Asaoka : Graduate School of Integrated Sciences for Life, Hiroshima University
	Adsorption mechanisms of phosphate onto coal fly ash-blast furnace cement composite for septic tanks
21AG006	Takashi Komesu : University of Nebraska-Lincoln
	The electronic structure investigation of Pd overlayers on Cr2O3 single crystals
21AG007	Yasumasa Hikosaka : Institute of Liberal Arts and Science at University of Toyama
	Ion time-of-flight mass spectrometry for ion desorption after molecular inner-shell excitation
21AG008	Hiroaki Anzai : Graduate School of Engineering, Osaka Prefecture University
	Material dependence of the Kondo resonance peak in photoemission spectra of Yb _X Cu ₄ (X=Ag, Cd, In, and Sn
21AG009	Hiroaki Anzai : Graduate School of Engineering, Osaka Prefecture University
	Observation of the heavy-fermion behavior in quadruple perovskite oxides
21AG010	Dmitry Estyunin : Saint Petersburg State University
	Contact of antiferromagnetic topological insulator MnBipTe, with Ph and Nh thin films

21AG011	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle resolved photoemission spectroscopy of chiral magnet YbNi3Al9
21AG012	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle resolved photoemission spectroscopy of valence transition compounds YbInCu4
21AG013	Yudai Izumi : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Secondary structure analysis of chromatin using VUV-CD spectroscopy
21AG014	Alexander Shikin : Saint Petersburg State University
	Modulation of Dirac gap in MnBi ₂ Te ₄ and MnBi ₄ Te ₇ as competition between the contributions of magnetic
	exchange interaction and magnetoelectric response
21AG015	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Magnetic properties at an interface between magnetic monatomic layers and hexagonal boron nitride
21AG016	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Magnetic coupling between transition metal layers through monolayer hexagonal boron nitride
21AG017	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Magnetic properties and structures of magnetic surface clusters
21AG018	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	XMCD studies for interfaces between magnetic layers and transition metal oxides grown on graphene/h-BN
21AG019	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Structural stability of proteins induced by disaccharides
21AG020	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	VUVCD measurements of monosaccharides
21AG021	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Interaction study of MBP and liposome membrane
21AG022	C. S. Yadav : Indian Institute of Technology Mandi
	Comparative ARPES study of transition metal doped topological compounds $M_{0.05}Bi_{1.95}Se_3$ (M = Au, Pt, and Pd)
21AG023	Jayita Nayak : Indian Institute of Technology Kanpur
	Investigation of electronic structure of topological semimetal SrAl ₂ Si ₂ and EuAl ₂ Si ₂
21AG025	Munisa Nurmamat : Graduate School of Advanced Science and Engineering, Hiroshima University
	High-resolution ARPES studies of quasi-one-dimensional transition metal chalcogenides
21AG026	Yoshihisa Matsumoto : Institute of Innovative Research, Tokyo Institute of Technology
	Analysis of the combined effects of heat and variant on the secondary structure of DNA repair proteins
21AG027	Yasuyuki Maki : Faculty of Science, Kyushu University
	Effect of sucralose on the stability of protein structure
21AG028	Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology
	Observation of nuclear creation process of liquid-liquid phase separation using VUV-CD spectroscopy
21AG029	Hiroyuki Ikemoto : Department of Physics, University of Toyama
	Electronic state of the chalcogen chains encapsuled in carbon nanotubes
21AG030	Daiki Ootsuki : Graduate School of Human and Environmental Studies, Kyoto University
214 0021	Electronic structure analysis of excitonic effects in transition metal chalcogenide compounds
21AG031	Kenta Kuroda : The Institute for Solid State Physics, University of Tokyo
	Systematic investigations of many-body interaction between localized and itinerant electrons in cerium
21 4 0022	monopricules with unusual magnetic properties
21AG032	Munisa Nurmamat : Graduate School of Advanced Science and Engineering, Hiroshima University
21 4 (2022)	Spin-resolved ARPES studies of quasi-one-dimensional topological surface states of layered tellurides
21AG033	Snin-icni wada : Graduate School of Advanced Science and Engineering, Hiroshima University

Evaluation of molecular conductivity probed by electron spectroscopy

- 21AG034 Shin-ichi Wada : Graduate School of Advanced Science and Engineering, Hiroshima University Conductivity evaluation of aromatic molecules probed by soft X-ray absorption spectroscopy
- 21AG035 Shin-ichi Wada : Graduate School of Advanced Science and Engineering, Hiroshima University Soft X-ray spectroscopy of substrate supported lipid membranes
- 21AG036 Hiroaki Yoshida : Graduate School of Advanced Science and Engineering, Hiroshima University Soft x-ray photoelectron spectroscopy of vitamins molecules included in cyclodextrins
- 21AG037 Hiroaki Yoshida : Graduate School of Advanced Science and Engineering, Hiroshima University Soft x-ray absorption spectroscopy of vitamins molecules included in cyclodextrins
- 21AG038 Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University Exploration of spin-polarized topological nodal lines in Fe based ferromagnetic alloys
- 21AG039 Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University Low energy ARPES of antiferromagnetic Weyl semimetals
- 21AG040 Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University Synchrotron radiation ARPES study of Dirac nodal line superconductor candidate ZrP_{2-x}Se_x
- 21AG041 Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University Identification of orbital symmetries in band structures of rare earth compounds with odd parity order
- 21AG042 Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University ARPES measurements of Ti₂O₃ films whose lattice strain controlled by the film thickness
- 21AG043 Koji Miyamoto : Hiroshima Synchrotron Radiation Center, Hiroshima University Electronic structure of Bi/Ni on MgO(001)
- 21AG044 Shinjiro Hayakawa : Graduate School of Advanced Science and Engineering, Hiroshima University Development of a rod shaped device for conversion electron yield measurements and its application for polarization dependent XAFS measurements
- 21AG045 Jens Ruediger Stellhorn : Graduate School of Advanced Science and Engineering, Hiroshima University Structure of a novel amorphous organic inorganic hybrid tin cluster exhibiting nonlinear optical effects by low energy XAFS measurements
- 21AU001 Toshirou Hata : Graduate School of Science and Technology, Kumamoto University Valence-band electronic states of Gd-TM metallic glass alloys having thermal rejuvenation effect II
- 21AU002 Baojie Feng : Institute of Physics, Chinese Academy of Sciences ARPES study of topological electronic structures in niobium tellurium chloride
- 21AU003 Jens Ruediger Stellhorn : Graduate School of Advanced Science and Engineering, Hiroshima University The local environment of S in chalcogenide-based solid state electrolytes by low-energy XAFS measurements
- 21AU004 Hideaki Iwasawa : National Institutes for Quantum and Radiological Science and Technology Uncovering oxygen isotope effects on multiple kinks in optimally-doped Bi2212
- 21AU005 Kazuyuki Sakamoto : Graduate School of Engineering, Osaka University Investigation of the origin of photo-induced doping on TlBiSe₂
- 21AU006 Sutiman Bambang Sumitro : Brawijaya University CD spectroscopy-based of astaxanthin-metal ions complexes as efforts to improve the rheology of glycated albumin
- 21AU007 Shinya Hosokawa: Institute of Industrial Nanomaterials, Kumamoto University Conduction-band electronic states of Gd-TM metallic glass alloys having thermal rejuvenation effect II
- 21AU008 Sakura Takeda : Nara Institute of Science and Technology Spin polarization of valence electrons beneath Si(001) surface
- 21AU009 Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University

Time-resolved measurements of membrane-induced structural change of protein 21AU010 Masaaki Sugiyama : Institute for Integrated Radiation and Nuclear Science, Kyoto University Structural analysis of ER protein foldase by vacuum ultraviolet circular dichroism spectroscopy 21AU011 Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University Conformation change of Magainin2 depending on the characteristics of membrane 21AU012 Mohamed Ibrahim : Hiroshima Synchrotron Radiation Center, Hiroshima University Synchrotron radiation circular dichroism study of exopolysaccharides from marine microbes 21AU013 Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University Study of the electronic structure of the chiral crystal NbSi2 21AU014 Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University High-resolution ARPES of rare earth compounds with odd parity order 21BG001 Hitoshi Yamaoka : RIKEN SPring-8 Center Photoelectron spectroscopy study of YbCo2 and Yb1+xIn1-xCu4 21BG002 Yasumasa Hikosaka : Institute of Liberal Arts and Science at University of Toyama X-ray photoelectron spectroscopy of PMMA adsorbed on metal surface 21BG003 Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University Study of CISS effect on the chiral crystal NbSi2 21BG004 Masanori Wakisaka : Graduate School of Science, Tohoku University Elucidation of the electron state of hetero-type one-dimensional bromide-bridged Ni(III) complex chains 21BG005 Zhenyu Wang : Southern University of Science and Technology Electronic structure and spin polarization of magnetic topological semimetal EuSb₂ 21BG006 Shin-ichiro Ideta : Hiroshima Synchrotron Radiation Center, Hiroshima University Reexamination of phase diagram of high-Tc cuprates studied by angle-resolved photoemission spectroscopy 21BG007 Toshirou Hata : Graduate School of Advanced Science and Engineering, Hiroshima University XAFS analysis of the calcium carbonate precipitation applied under high pressure and low-temperature conditions 21BG008 Shinjiro Hayakawa : Graduate School of Advanced Science and Engineering, Hiroshima University Characterization of oriented polythiophene thin films with polarization dependent S K-edge XAFS spectroscopy 21BG009 Kazujki Sumida : Japan Atomic Energy Agency Polarization-dependent spin-resolved ARPES for Heusler-type Weyl ferromagnetic films with half-metallic electronic structures 21BG010 Hiroyuki Ikemoto : Department of Physics, University of Toyama Electronic state of the chalcogen chains encapsuled in carbon nanotubes 21BG011 Takeshi Kondo : The Institute for Solid State Physics, University of Tokyo Electronic structure of chiral magnets and Kagome magnets studied by ARPES Kenta Kuroda : The Institute for Solid State Physics, University of Tokyo 21BG012 Photoelectron intensity angular distribution and breaking selection rule investigated by low-energy synchrotron radiation 21BG013 Kazumasa Okada : Graduate School of Advanced Science and Engineering, Hiroshima University Study on intermolecular interactions of the water-acetone binary system observed in its near ultraviolet absorption spectra 21BG014 Shinya Hosokawa : Institute of Industrial Nanomaterials, Kumamoto University Conduction-band electronic states of La-Ni-Al metallic glass alloys having thermal rejuvenation effect 21BG015 Shinya Hosokawa : Institute of Industrial Nanomaterials, Kumamoto University Conduction-band electronic states of La-Ni-Al metallic glass alloys having thermal rejuvenation effect 21BG016 Heun Tae Lee : Graduate School of Engineering, Osaka University

	Photoelectron spectroscopy of beta-tungsten thin-films
21BG017	Chaoyu Chen : Southern University of Science and Technology
	Valley-dependent spin polarization in bulk BaMnSb2 with broken inversion symmetry
21BG018	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study of spin-electronic structure of chiral polarized two-dimensional organic/inorganic hybrid perovskite
21BG019	Susumu Mineoi : Graduate School of Advanced Science and Engineering, Hiroshima University
	Development of degradation analysis methods of automobile materials by fluorescence yield XAFS measurement
21BG020	Chaoyu Chen : Southern University of Science and Technology
	High resolution ARPES study on CsV ₃ Sb ₅ with Cr doping
21BG021	Yasuyuki Maki : Faculty of Science, Kyushu University
	Effect of sucralose on the structural stability of myoglobin
21BG022	Teppei Yoshida : Graduate School of Human and Environmental Studies, Kyoto University
	Substrate dependence of metal-insulator transition on Ru nanosheets
21BG023	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle resolved photoemission spectroscopy of valence transition compound YbInCu ₄ (100)
21BG024	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Direct observation of c-f hybridization band of valence transition compound YbInCu4(100) by means of angle
	resolved photoemission spectroscopy
21BG025	Shin-ichi Wada : Graduate School of Advanced Science and Engineering, Hiroshima University
	Evaluation of molecular conductivity probed by electron spectroscopy 2
21BG026	Shin-ichi Wada : Graduate School of Advanced Science and Engineering, Hiroshima University
	Conductivity evaluation of aromatic molecules probed by soft X-ray absorption spectroscopy 2
21BG027	Shin-ichi Wada : Graduate School of Advanced Science and Engineering, Hiroshima University
	Soft X-ray spectroscopy of substrate supported lipid membranes 2
21BG028	Dmitry Estyunin : Saint Petersburg State University
	Study of the Dirac point shift and the Dirac point band gap in the intrinsic magnetic topological insulators Mn(Bi1.
	x,Sbx)2Te4
21BG029	Koji Miyamoto : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study of superconductivity on Bi/Ni hetero bilayer
21BG030	Koji Miyamoto : Hiroshima Synchrotron Radiation Center, Hiroshima University
	The observation of topological surface state different from cleaving surface
21BG031	Shinjiro Hayakawa : Graduate School of Advanced Science and Engineering, Hiroshima University
	C K-edge XAFS applications for determination of unsaturated bonds in silicon-bridged polymers
21BG032	Takayoshi Yokoya : Research Institute for Interdisciplinary Science, Okayama University
	Synchrotron ARPES of CrO ₂ : Direct observation of momentum dependence of NQP states
21BG033	Takayoshi Yokoya : Research Institute for Interdisciplinary Science, Okayama University
	Direct observation of electronic structure in Se substituted La(O,F)BiS _{2-x} Se _x by synchrotron ARPES
21BG034	Takayoshi Yokoya : Research Institute for Interdisciplinary Science, Okayama University
	Electronic structure study of functional materials at BL-5 (FY2021 Latter period)
21BG035	Naoyuki Maejima : College of Science, Rikkyo University
	Magnetic property analysis of transition metal phosphide thin film
21BG036	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Pressure depedence of Topological phase transition on TlBiSe2 and TlBiS2
21BG037	Alexander Shikin : Saint Petersburg State University
	Correlation between modulation of the gap at the Dirac point and changes in stoichiometry in series MnBi ₂ Te ₄ ,

	$MnBi_2Se_4$ and $MnBi_2Te_{4-x}Se_x$ with the out-of-plane to in-plane transformation of the magnetic anisotropy
21BG038	Prashant Shahi : Deen Dayal Upadhyaya Gorakhpur University
	High-resolution ARPES study of chromium chalcogenide spinels
21BG039	Nao Tsunoji : Graduate School of Advanced Science and Engineering, Hiroshima University
	XAFS characterization of transition metal and noble metal in ordered nano-metal oxide
21BG040	Hiroaki Yoshida : Graduate School of Advanced Science and Engineering, Hiroshima University
	Soft X-ray absorption spectroscopy of cyclodextrin compounds including a noble metal atom
21BG041	Hiroaki Yoshida : Graduate School of Advanced Science and Engineering, Hiroshima University
	Soft x-ray photoelectron spectroscopy of the metal complex included in cyclodextrin
21BG042	Chang Liu : Southern University of Science and Technology
	Exploration of the topological surface state gap in $Mn(Bi_{1-x}Sb_x)_4Te_7$
21BG043	Chang Liu : Southern University of Science and Technology
	Probing a new type of spin-splitting effect predicted by the spin group theory
21BG044	Chang Liu : Southern University of Science and Technology
	Co-modulation of Dirac point and gap size in magnetic topological insulators SnxMn _{1-x} (Sb _y Bi _{1-y}) ₂ Te ₄
21BG045	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	Exploration of spin-polarized topological band structures in ferromagnetic Mn based alloys
21BG046	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	Exploration of split-band structures and verification of electric toroidal order in CeCoSi
21BG047	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	A determination of orbital symmetries in the band structures of Dirac nodal line superconductor $ZrP_{2-x}Se_x$
21BU001	Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle-resolved photoemission study of MnSi
21BU002	Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology
	Observation of nuclear creation process of liquid-liquid phase separation using VUV-CD spectroscopy
21BU003	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Circular dichroism measurements of proteins and peptides in film state
21BU004	Yoko Nittta : Faculty of Core Research Natural Science Division, Ochanomizu University
	Structural analysis of strawberry allergen Fra a 1
21BU005	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Band structure of magnetic topological nodal-line semimetal EuSb ₂
21BU006	Kenta Kuroda : Graduate School of Advanced Science and Engineering, Hiroshima University
	Study of spin-orbit coupled electronic structures in magnetic materials
21BU007	Osamu Takahashi : Graduate School of Advanced Science and Engineering, Hiroshima University
	XAS study of light damaged organic film
21BU008	Hiroaki Yoshida : Graduate School of Advanced Science and Engineering, Hiroshima University
	Hard X-ray absorption spectroscopy of a gold complex included by cyclodextrin
21BU009	Tetsuji Sekitani : Graduate School of Advanced Science and Engineering, Hiroshima University
	Study of fullerene adsorbed on self-assembled monolayer using NEXAFS and XPS
21BU010	Naohisa Happo : Graduate School of Information Sciences, Hiroshima City University
	EXAFS of Graphite-Intercalation-Compound Ko _{0.6} Ca _{0.4} C ₈
21BU011	Masahiro Hara : Graduate School of Science and Technology, Kumamoto University
	XAS/XMCD measurements of anatase nanoparticles converted from titanium oxide nanosheets
21BU012 J	Iun Maruyama : Osaka Research Institute of Industrial Science and Technology
	Confirmation of vacuum ultraviolet circular dichroism spectra for carbon nanotube modified with helically aligned

nanopores

21BU013 Shin-ichiro Ideta : Hiroshima Synchrotron Radiation Center, Hiroshima University Spin-resolved photoemission spectroscopy study of the antiferromagnetic metal NiS_{2-x}Se_x

22AG001	Shiv Kumar : Hiroshima Synchrotron Radiation Center, Hiroshima University
	High-resolution angle-resolved photoemission study of transition-metal dipnictides TMPn ₂
22AG002	Kazuyuki Sakamoto : Graduate School of Engineering, Osaka University
	Electronic structure of magnetic molecule adsorbed atomic layer superconductor TIPb
22AG003	Mohamed Ibrahim : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Synchrotron radiation circular dichroism study of expolysaccharides from marine resources
22AG004	Masanori Wakisaka : Graduate School of Science, Tohoku University
	Elucidation of the electronic state of halogen-bridged metal complexes by angle-resolved photoelectron
	spectroscopy
22AG005	Shin-ichiro Ideta : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Electronic structure of cuprate superconductors under uniaxial strain
22AG006	Shin-ichiro Ideta : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Reexamination of phase diagram of high-T _c cuprates studied by Super high-resolution ARPES
22AG007	Toshirou Hata : Graduate School of Advanced Science and Engineering, Hiroshima University
	XAFS analysis of the Calcium based low-CO2 emission geomaterials
22AG008	Nao Tsunoji : Graduate School of Advanced Science and Engineering, Hiroshima University
	XAFS characterization of transition metal and noble metal in metal oxide catalysts
22AG009	Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology
	Observation of nuclear creation process of liquid-liquid phase separation using VUV-CD spectroscopy
22AG010	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle resolved photoemission spectroscopy of 4f chiral magnet
22AG011	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle resolved photoemission spectroscopy of valence transition compounds YbInCu4(100)
22AG012	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Structural analysis of α-synuclein induced with membrane
22AG013	Koichi Matsuo: Hiroshima Synchrotron Radiation Center, Hiroshima University
	Structural stability of proteins induced by disaccharides
22AG014	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Time-resolved measurements of structural change of protein
22AG015	Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle-resolved photoemission study of MnSi
22AG016	Koji Miyamoto : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study of thickness-dependent electronic structure on Bi/Ni hetero bilayer
22AG017	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study of CISS effect on the chiral crystal NbSi ₂
22AG018	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study of spin-electronic structure of chiral polarized two-dimensional organic/inorganic hybrid perovskite
22AG019	Jayita Nayak : Indian Institute of Technology Kanpur
	Band structure engineering of some magnetic topological semimetals

22AG020	Takashi Komesu : University of Nebraska-Lincoln
	The electronic structure investigation of dimensionality driven iridates
22AG021	Osamu Takahashi : Graduate School of Advanced Science and Engineering, Hiroshima University
	XAS study of light damaged organic film
22AG022	Hiroaki Anzai : Graduate School of Engineering, Osaka Prefecture University
	Temperature dependence of the heavy-fermion bands in YbAgCu ₄
22AG023	Hiroaki Anzai : Graduate School of Engineering, Osaka Prefecture University
	Temperature dependence of the heavy-fermion behavior in quadruple perovskite oxides
22AG024	Yoshihisa Matsumoto : Institute of Innovative Research, Tokyo Institute of Technology
	Effects of variants of DNA repair proteins on the secondary structure and its temperature sensitivity
22AG025	Shin-ichi Wada : Graduate School of Advanced Science and Engineering, Hiroshima University
	Electronic relaxation dynamics depending on molecular conductivity probed by electron spectroscopy
22AG026	Shin-ichi Wada : Graduate School of Advanced Science and Engineering, Hiroshima University
	Exploring functional organic molecules assembled on Au nanoparticles by X-ray absorption spectroscopy
22AG027	Markus Donath : University of Münster
	Magnons in ultrathin Ni films
22AG028	Takayoshi Yokoya : Research Institute for Interdisciplinary Science, Okayama University
	$\label{eq:angle resolved photoemission spectroscopy in R_{1-x}Ce_xOBiS_2(R=La, Pr, Nd): Direct observation of the c-f mixed$
	band
22AG029	Takayoshi Yokoya : Research Institute for Interdisciplinary Science, Okayama University
	Electronic structure study in layered nitride chloride superconductor by SR-ARPES
22AG030	Takayoshi Yokoya : Research Institute for Interdisciplinary Science, Okayama University
	Electronic structure study of functional materials at BL-5 (FY2022 First half)
22AG031	Kazumasa Okada : Graduate School of Advanced Science and Engineering, Hiroshima University
	Study on intermolecular interactions of the water-acetone binary system observed in its near ultraviolet absorption
	spectra (Part 2)
22AG032	Shinjiro Hayakawa : Graduate School of Advanced Science and Engineering, Hiroshima University
	Improvements in XAFS measurements at BL11
22AG033	Akari Takayama : Faculty of Science and Engineering, School of Advanced Science and Engineering, Waseda
	University
	Study of Electronic state of topological heterojunction in Sb/Bi by spin-resolved ARPES
22AG034	Friedrich Reinert : Universitaet Wuerzburg
	Investigation of the spin texture in epitaxially grown Te-based thin film quantum materials
22AG035	Friedrich Reinert : Universitaet Wuerzburg
	Mapping the temperature dependence of the magnetic gap in a ferromagnetically extended topological insulator:
	high-resolution ARPES at low temperatures and low photon energies
22AG036	Chang Liu : Southern University of Science and Technology
	Study of fermi surface topology on CoP-based Th Cr_2Si_2 structural compounds $ACo_2P_2(A = Ca, Sr, La, Ce, Pr, Nd, Ce, Pr, Pr, Nd, Ce, Pr, Pr, Pr, Pr, Pr, Pr, Pr, Pr, Pr, Pr$
	Eu)
22AG037	Chang Liu : Southern University of Science and Technology
	Spin-resolved ARPES study on magnetic topological insulator Mn(Bi _{1-x} Sb _x) ₂ Te ₄
22AG038	Chang Liu : Southern University of Science and Technology
	Co-modulation of Dirac point and gap size in magnetic topological insulators SnxMn _{1-x} (Sb _y Bi _{1-y}) ₂ Te ₄
22AG039	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	Site-specific quantitative evaluation of electron-electron interaction in CoFe-based half-metallic ferromagnetic

alloys

22AG040	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	Topological surface states and carrier tuning in the loop-node superconductor ZrP _{2-x} Se _x
22AG041	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	Exploration of spin-polarized topological band structures in ferrimagnetic Mn based alloys
22AG042	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	Observation of Hopf-links and drumhead spin-polarized surface states in Heusler-type ferromagnets
22AU001	Meng Wang : CEMS, RIKEN
	XAS and XMCD study of the relationship between spin-state and magnetoresistivity in La _{1-x} Sr _x CoO ₃ film
22AU002	Shiv Kumar : Hiroshima Synchrotron Radiation Center, Hiroshima University
	High-resolution angle-resolved photoemission study of nodal line topological semimetal
22AU003	Tomohide Saio : Institute of Advanced Medical Sciences, Tokushima University
	Unraveling molecular mechanism for protein quality control system
22AU004	Yasuyuki Matoba : Faculty of Pharmacy, Yasuda Women's University
	YUVCD measurements of O-acetyl-L-homoserine sulfhydrylase from lactobacillus plantarum
22AU005	Shiv Kumar : Hiroshima Synchrotron Radiation Center, Hiroshima University
	X-ray magnetic circular dichroism (XMCD) study of magnetic topological materials
22AU006	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Laser ARPES on new 4f chiral magnet YbNi3Al9
22BG001	Tatsuhito Matsuo : National Institutes for Quantum and Radiological Science and Technology
	Secondary structure analysis of amyloid polymorphic fibrils with distinct cytotoxicity using vacuum-ultraviolet
	circular dichroism
22BG002	Yuji Muraoka : Research Institute for Interdisciplinary Science, Okayama University
	Verification of magnetic property for room temperature ferromagnet Q-carbon by using X-ray MCD method
22BG003	Susumu Mineoi : Graduate School of Advanced Science and Engineering, Hiroshima University
	Development of chemical state evaluation analysis methods for automotive functional materials by XAFS
	measurement
22BG004	Shin-ichiro Ideta : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Reexamination of phase diagram of high-Tc cuprates studied by super high-resolution ARPES II
22BG005	Shin-ichiro Ideta : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Spin-resolved photoemission spectroscopy study of the antiferromagnetic metal NiS2-xSex II
22BG006	Toshirou Hata : Graduate School of Advanced Science and Engineering, Hiroshima University
	Experimental study on the geological CO2 deposit via biofilm DAC(Direct Air Capture)
22BG007	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Magnetic properties at the interface between hexagonal boron nitride and magnetic intercalated layers
22BG008	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Magnetic coupling between transition metal layers through monolayer hexagonal boron nitride
22BG009	Hiroyuki Ikemoto : Department of Physics, University of Toyama
	Electronic state of the chalcogen chains encapsuled in carbon nanotubes
22BG010	Daiki Ootsuki : Graduate School of Human and Environmental Studies, Kyoto University
	Low-energy electronic structure analysis of transition metal chalcogenides with high thermoelectric performance
22BG011	Cai Liu : Southern University of Science and Technology
	ARPES Study on Antiferromagnetic topological semimetal Tb ₂ CuGe ₆
22BG012	Cai Liu : Southern University of Science and Technology
	Laser-based Angle-Resolved Photoemission Spectroscopy Study on MnBi10Te16

22BG013	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Electronic structure of new 4f chiral magnet studied by angle resolved photoemission spectroscopy
22BG014	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle resolved photoemission spectroscopy of new 4f chiral magnet
22BG015	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study on spin texture of new 4f chiral magnet YbNi ₃ Al ₉
22BG016	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Circular dichroism measurements of film proteins prepared by spin coater
22BG017	Masahiro Kobayashi : National Institute for Fusion Science
	Circular dichroism analysis of molecular structure in amino acid specimen by vacuum-ultraviolet circularly-
	polarized light irradiation
22BG018	Ryota Akiyama : Graduate School of Science, The University of Tokyo
	Modulation of band dispersions by Yb-intercalation into graphene
22BG019	Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology
	Observation of nuclear creation process of liquid-liquid phase separation using VUV-CD spectroscopy
22BG020	Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology
	Analysis of antibody-drug conjugate in tumor cells utilizing synchrotron soft X-ray spectroscopy
22BG021	Masahiro Hara : Graduate School of Science and Technology, Kumamoto University
	XAS/XMCD measurements of anatase nanoparticles converted from titanium oxide nanosheets
22BG022	Koji Miyamoto : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Spin Hall effect in Pt(001) probed by spin- and angle-resolved photoemission spectroscopy
22BG023	Ke Deng : Southern University of Science and Technology
	ARPES Study of a low dimensional chiral Dirac material
22BG024	Chaoyu Chen : Southern University of Science and Technology
	ARPES Study on Antiferromagnetic topological semimetal SmAlSi
22BG025	Chaoyu Chen : Southern University of Science and Technology
	High resolution ARPES study on Si-terminated and Gd-terminated surfaces of GdIr ₂ Si ₂
22BG026	Chaoyu Chen : Southern University of Science and Technology
	Investigating the electronic structure and CDW gap structure of $Cs(V_{1-x}Ti_x)_3Sb_5$ by ARPES
22BG027	Chaoyu Chen : Southern University of Science and Technology
	Spin-resolved ARPES study on antiferromagnetic topological material CeBi
22BG028	Shiv Kumar : Hiroshima Synchrotron Radiation Center, Hiroshima University
	High-resolution ARPES study of room temperature skyrmion ferromagnetic van der Waals semimetal
22BG029	Ke Deng : Southern University of Science and Technology
	Revealing the electronic structure of a metallic magnetic van der Waas compound
22BG030	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	Dirac Velocity and carrier-tuning in the loop-node superconductor XrP _{2-x} Se _x (X=Zr, Hf)
22BG031	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	Exploration of topological band structures in Fe based ferromagnetic alloy films utilizing UHV suitcase
22BG032	Mohamed Ibrahim : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Impacts of polysaccharides on protein
22BG033	Naoyuki Maejima : College of Science, Rikkyo University
2200024	Magnetic property analysis of transition metal phosphide thin film
22BG034	rayuan Zhang : Shanghai Institute of Microsystem and information Technology, CAS
	The electronic structure study on an air-stable, high mobility van der Waals material 1aCo ₂ 1e ₂ by ARPES

22BG036 Kenta Kuroda : Graduate School of Advanced Science and Engineering, Hiroshima University Exploring low-carrier charge ordered phase by ARPES 22BG037 Kenta Kuroda : Graduate School of Advanced Science and Engineering, Hiroshima University Peculiar photoelectron intensity angular distribution through band transition investigate be low-energy synchrotron radiation ARPES 22BG038 Hikaru Yabuta : Graduate School of Advanced Science and Engineering, Hiroshima University Structural analysis of prebiotic depsipeptides by circular-dichroism spectroscopy 22BG039 Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University ARPES study of strain-induced topological phase transitions in Pb_{1-x}Sn_xTe 22BG040 Yognqing Cai : Southern University of Science and Technology ARPES study on antiferromagnetic topological semimetal Sm2CuGe6 22BG042 Shin-ichi Wada : Graduate School of Advanced Science and Engineering, Hiroshima University Soft X-ray spectroscopy of substrate supported phospholipid membranes 22BG043 Shin-ichi Wada : Graduate School of Advanced Science and Engineering, Hiroshima University Exploring functional organic molecules assembled on Au on of aromatic molecules probed by soft X-ray absorption spectroscopy II 22BG044 Shin-ichi Wada : Graduate School of Advanced Science and Engineering, Hiroshima University Electronic relaxation dynamics depending on molecular conductivity probed by electron spectroscopy II 22BG045 Guodong Liu : Institute of Physics, Chinese Academy of Sciences A study on the nature of exotic Fermi arc state and magnetic topological states in Rare-earth Monopnictides RX (R = Ce, Nd; X = Sb, Bi) by using spin-resolved ARPES 22BG046 Takeshi Kondo : The Institute for Solid State Physics, University of Tokyo Light-polarization dependent bulk band dispersions in a transition metal dichalcogenide 22BG047 Hongtao Rong : Southern University of Science and Technology ARPES study on Co-based magnetic Heusler compound Co₂T_X (T=transition metals ; X=Si, Ge, Sn, Al and Ga) 22BG048 Hongtao Rong : Southern University of Science and Technology Electronic structure study on Mn-doped (Ge_{1-x}Mn_x)Sb₂Te₄ 22BG049 Chang Liu : Southern University of Science and Technology ARPES study on a novel surface state in obstructed atomic insulators 22BG050 Chang Liu : Southern University of Science and Technology Probing the spin structure of antiferromagnetic-induced fermi-arc-like split bands in NdBi 22BG051 Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University Observation of Weyl cones and surface Fermi arc of Weyl semimetals with broken time-reversal and spaceinversion symmetries Shinya Hosokawa : Institute of Industrial Nanomaterials, Kumamoto University 22BU001 Conduction-band electronic states of La-Ni-Al metallic glass alloys having thermal rejuvenation effect II 22BU002 Shinya Hosokawa : Institute of Industrial Nanomaterials, Kumamoto University Conduction-band electronic states of La-Ni-Al metallic glass alloys having thermal rejuvenation effect II 22BU003 Zhang Ke : University of Electronic Science and Technology of China Uncovering nonsymmorphic symmetry protected hidden spin polarization in inversion-symmetric multiphase superconductor Ce(RhAs)₂ Zhang Ke : University of Electronic Science and Technology of China 22BU004 Observation of fully spin-polarized Weyl monoloop surface states in rutile-type metal fluorides LiV₂F₆

22BG035 Fayuan Zhang : Shanghai Institute of Microsystem and information Technology, CAS

The electronic structure study on MnBi12Te19 by laser-based angle-resolved photoemission spectroscopy

22BU005	Yoshinori Okada : Okinawa Institute of Science and Technology Graduate University
	Investigation of orbital-dependent band structure of spinel oxide superconductor LiTi2O4 epitaxial films
22BU006	Naohisa Happo : Graduate School of Information Sciences, Hiroshima City University
	Ca K-edge EXAFS of Graphite-Intercalation-Compound K _{0.7} Ca _{0.3} C ₈
22BU007	Kazuyuki Sakamoto : Graduate School of Engineering, Osaka University
	Investigation of the electronic structures of magnetic molecule adsorbed topological insulators
22BU008	Nao Tsunoji : Graduate School of Advanced Science and Engineering, Hiroshima University
	XAFS characterization of transition metal and noble metal in metal oxide catalysts
22BU009	Martin Andersson : Chalmers University of Technology
	Far UV-CD spectroscopy of protein-nanomaterials interaction
22BU010	Hideaki Iwasawa : National Institutes for Quantum and Radiological Science and Technology
	Elucidation of spin-electronic states of high-Tc cuprate superconductors
22BU011	Chaoyu Chen : Southern University of Science and Technology
	ARPES Study on intrinsic magnetic topological insulator CVT-MnBi2Te4
22BU012	Shinya Hosokawa : Institute of Industrial Nanomaterials, Kumamoto University
	Conduction-band electronic states of La-Ni-Al metallic glass alloys having thermal rejuvenation effect III
22BU013	Shin-ichiro Ideta : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Symmetry reduction of the electronic structure in heavily overdoped Pb-Bi2201 observed by ARPES

23AG001	Kojiro Mimura : Graduate School of Engineering, Osaka Metropolitan University
	Fe 3d electronic state in covalent-chain antiferromagnets $TlFeX_2$ (X = S, Se) investigated by resonant
	photoemission spectroscopy
23AG002	Ying Jin : University of Science and Technology Beijing
	Ex-situ soft x-ray absorption investigation towards passivation behavior of Titanium Alloys by Hydrogen charging
	and Tensioning
23AG003	Takashi Komesu : University of Nebraska-Lincoln
	Electronic Structure Investigations of ferromagnetic Pd Overlayers on Cr2O3 Single Crystals
23AG005	Akifumi Higashiura : Graduate School of Biomedical and Health Sciences, Hiroshima University
	Analysis of intraparticle structure to elucidate the formation mechanism of encapsulin particles
23AG006	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Membrane-bound structure and amyloid fibril formation analysis of a-synuclein peptide
23AG007	Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Structural change of α_1 acid glycoprotein induced by the membrane interaction
23AG008	Dmitry Estyunin : Saint-Petersburg state university
	$Modification \ of \ electronic \ structure \ of \ an \ intrinsic \ magnetic \ topological \ insulator \ (Mn_{1-x}, A_x)Bi_2Te_4 \ by \ substituting$
	Mn with non-magnetic elements A=(Ge, Pb, Sn)
23AG009	Hiroaki Anzai : Graduate School of Engineering, Osaka Metropolitan University
	Observation of Kondo resonance peak in the photoemission spectra of quadruple perovskite oxides
23AG010	Hiroaki Anzai : Graduate School of Engineering, Osaka Metropolitan University
	Direct observation of the heavy-fermion bands in YbXCu ₄ (X=Ag, In)
23AG011	Mohamed Ibrahim : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Structural and conformational elucidations of carrageenan polysaccharides gels induced by different stimuli using
	circular dichroism spectroscopy

23AG012	Abdelrahman Mosaad Khattab : Al-Azhar University
	Structural and conformational studies of surfactin-derived bacteria using circular dichroism
23AG013	Hitoshi Sato: Hiroshima Synchrotron Radiation Center, Hiroshima University
	Electronic structure of new 4f chiral magnet studied by angle resolved photoemission spectroscopy II
23AG014	Hitoshi Sato: Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle resolved photoemission spectroscopy of new 4f chiral magnet
23AG015	Hitoshi Sato: Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study on spin texture of new 4f chiral magnet Yb(Ni _{1-x} Cu _x) ₃ Al ₉
23AG016	Meng Wang : CEMS, RIKEN
	XAS and XMCD study of the magnetic states in RuO2/CoFe2O4 and IrO2/CoFe2O4 interface
23AG017	Yasuyuki Maki : Faculty of Science, Kyushu University
	Effect of glucose on the thermal stability of proteins
23AG018	Shinjiro Hayakawa : Graduate School of Advanced Science and Engineering, Hiroshima University
	Ca K-edge EXAFS spectroscopy and in situ observation of phase transformation among calcium carbonate
	polymorphs
23AG019	Takayoshi Yokoya : Research Institute for Interdisciplinary Science, Okayama University
	Electronic structure study of functional materials at BL-5 (FY2023 A)
23AG020	Akari Takayama : Faculty of Science and Engineering, School of Advanced Science and Engineering, Waseda
	University
	Topological proximity effect in Sb/Bi heterojunction studied by spin-resolved ARPES
23AG021	Shilong Wu : Institute of Physics, Chinese Academy of Sciences
	High resolution ARPES study of type IV Dirac band structures in superconducting SrAgBi
23AG022	Guodong Liu : Institute of Physics, Chinese Academy of Sciences
	A study on the topological nature of superconductor SnAs by using high-resolution ARPES
23AG023	Guodong Liu : Institute of Physics, Chinese Academy of Sciences
	A study on the nature of correlated Flat band and 2D Dirac fermions in the magnetic kagome metal FeSn by using
	spin-resolved ARPES
23AG024	Baojie Feng : Institute of Physics, Chinese Academy of Sciences
	Exploration of flat bands in low-dimensional tellurides
23AG025	Baojie Feng : Institute of Physics, Chinese Academy of Sciences
	ARPES study of a candidate Weyl semimetal
23AG026	Zhang Ke : University of Electronic and Technology of China (UESTC)
	Revealing the band structure of emerging superconducting nickelates $La_{0.8}Sr_{0.2}NiO_2$ and $Nd_{0.8}Sr_{0.2}NiO_2$ by high
	resolution ARPES
23AG027	Hikaru Yabuta : Graduate School of Advanced Science and Engineering, Hiroshima University
	Structural analysis of prebiotic depsipeptides by circular-dichroism spectroscopy
23AG028	AVERLANT-PETIT Marie Christine : Unversité de Lorraine/CNRS
	Structural and conformational studies of peptide-based hydrogels: influence on self-assembling
23AG029	Masahiro Sawada : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Magnetic coupling between transition metals through monolayer hexagonal boron nitride
23AG030	Kenta Kuroda : Graduate School of Advanced Science and Engineering, Hiroshima University
	Study of topological electronic structures in atomic-layer magnetic thin films
23AG031	Kenta Kuroda : Graduate School of Advanced Science and Engineering, Hiroshima University
	Systematic investigations of many-body interaction in low-carrier rare-earth monopnictides
23AG032	Kenta Kuroda : Graduate School of Advanced Science and Engineering, Hiroshima University

	Study of spin-orbit coupled electronic structures in antiferromagnets
23AG033	Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology
	Observation of nuclear creation process of liquid-liquid phase separation using VUV-CD spectroscopy
23AG034	Friedrich Reinert : Universitäet Wüerzburg
	Mapping the pseudospin texture in a Kagome superconductor by means of dichroic ARPES
23AG035	Friedrich Reinert : Universitäet Wüerzburg
	Electronic structure and spin texture of a Tellurium Kagome monolayer grown on Pt(111)
23AG036	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Trial to control the anisotropy of topological surface states
23AG037	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Temperature and substrate dependence of magnetic anisotropy of O/FeCo(001)film on Pd(001)
23AG038	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Topological electronic states induced by external perturbation (pressure and electric current)
23AG039	Jayita Nayak : Indian Institute of Technology Kanpur
	Band structure investigation of RAIX (R: Ce, Pr, Nd, La; X: Si or Ge) semimetals
23AG040	Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Observation of Electron Correlation Effects in MnSi by ARPES
23AG041	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	Exploration of spin-polarized topological band structures in ferrimagnetic Mn based alloys
23AU001	Hideaki Iwasawa : National Institutes for Quantum and Radiological Science and Technology
	Application of measurement informatics on spin-resolved ARPES experiments
23AU002	Shilong Wu : Institute of Physics, Chinese Academy of Sciences
	Laser-spin-ARPES study of spin-polarized Fermi arcs in a Weyl semimetal superconductor
23AU003	Alexander Shikin : Saint-Petersburg state university
	Study of modification of electronic structure of $MnBi_2Te_4$ under doping with low concentrations of Pb, Ge, Sn, Si
	depending on the temperature and polarization of laser radiation to analyze changes in their magnetic properties
23AU004	Masahiro Kobayashi : National Institute for Fusion Science
	Circular dichroism analysis of molecular structure in amino acid specimen by vacuum-ultraviolet circularly-
	polarized light irradiation
23AU005	Tomohide Saio : Institute of Advanced Medical Sciences, Tokushima University
	Molecular Mechanism of Chaperone Action Characterized by Time-Resolved Vacuum-Ultraviolet Circular
	Dichroism Spectroscopy
23AU006	Masato Sakano : School of Engineering, The University of Tokyo
	Observation of characteristic spin texture in few-layer WTe ₂
23AU007	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Laser ARPES on new 4f chiral magnet YbNi ₃ Al ₉
23AU008	Ken Terao : Graduate School of Science, Osaka University
	Destabilization mechanism of triple helical structure of collagen upon complexation with nanoparticles
23AU009	Alexander Shikin : Saint-Petersburg state university
	Modification of electronic spin structure of MnBi2Te4 doped with Pb at different concentrations for analysis of
	interaction between topology and magnetism
23AU010	Pramod Bhatt : Bhabha Atomic Research Centre Mumbai India
	Soft X-ray Absorption Spectroscopy (XAS) Study of Vanadium Hexacyanoferrate Based Open Framework
	Compound
23AU011	Jun Maruyama : Osaka Research Institute of Industrial Science and Technology

	Determination of chirality at nanopore arrangement in needle-like carbon
23AU012	Alexander Shikin : Saint-Petersburg state university
	Modification of the spin structure of Ge(Pb)xMn1-xBi2Te4 at the topological phase transitions
23AU013	Turgut Yilmaz : University of Connecticut
	Investigating the semimetal phase in TiSe ₂
23BG001	Chang Liu : Southern University of Science and Technology
	Evolution of electronic structure of itinerant-moment magnetic phase transition in the Sr _{1-x} Ca _x Co ₂ P ₂ system
23BG002	Chang Liu : Southern University of Science and Technology
	Probing a new type of SOC-independent, momentum-dependent spin splitting effect in antiferromagnets
23BG003	Ken Terao : Graduate School of Science, Osaka University
	Dissociation-association dynamics of double helices of the multi-helical polymer xanthan in aqueous solution
23BG004	Taichi Okuda : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Verification of chirality induced spin selectivity effect (CISS effect) in self-assembled chiral polymers on gold
	surface
23BG005	Hiroyuki Ikemoto : Department of Physics, University of Toyama
	Electronic state of the chalcogen chains encapsuled in carbon nanotubes
23BG006	Mark Edmonds : Monash University
	Understanding the spin-texture of the topological Dirac and flat bands in ultra-thin Kagome metal Mn ₃ Sn
23BG007	Kouji Miyamoto : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Thickness-dependent electronic structure as the origin of the intrinsic spin Hall effect in Pt(001) thin film
23BG008	Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology
	Observation of nuclear creation process of liquid-liquid phase separation using VUV-CD spectroscopy
23BG009	Kentaro Fujii : National Institutes for Quantum and Radiological Science and Technology
	Analysis of antibody-drug conjugate in tumor cells utilizing synchrotron soft X-ray spectroscopy
23BG010	Ryota Akiyama : Graduate School of Science, The University of Tokyo
	Investigation of the band dispersion in Yb-intercalated graphene
23BG011	Shin-ichiro Ideta : Hiroshima Synchrotron Radiation Center, Hiroshima University
	ARPES study of the electronic structure on underdoped triple-layer cuprate
23BG012	Shin-ichiro Ideta : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Role of charge fluctuations on the electronic structure of cuprates observed by ARPES
23BG013	Marie Christine Averlant-Petit : Unversité de Lorraine/CNRS
	Structural and conformational studies of peptide-based hydrogels: influence on self-assembling
23BG014	Jayita Nayak : Indian Institute of Technology Kanpur
	Search for novel quantum states in axion insulators
23BG015	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	Origin of superconductivity in Dirac nodal-line materials with P square-net
23BG016	Takayoshi Yokoya : Research Institute for Interdisciplinary Science, Okayama University
	Synchrotron ARPES of nodal line semimetal candidate $LaTe_{1+x}Bi_{1-x}$
23BG017	Chaoyu Chen : Southern University of Science and Technology
	Investigation of c-f hybridization in Quasi-1D Kondo lattice CeCo2Ga8 and CeCo2Al8
23BG018	Chaoyu Chen : Southern University of Science and Technology
	ARPES study on magnetic hourglass candidate CsMn ₂ F ₆
23BG019	Chaoyu Chen : Southern University of Science and Technology
	Enhanced spin polarization of the surface state protected by non-symmorphic symmetry
23BG020	Chaoyu Chen : Southern University of Science and Technology

	Spin-resolved ARPES study on altermagnet candidate V _{1/3} NbS ₂
23BG021	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle resolved photoemission spectroscopy of reference material for new 4f chiral magnet YbNi3Al9
23BG022	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Angle resolved photoemission spectroscopy of LuNi3Al9; Comparison of band structure of new 4f chiral magnet
	YbNi ₃ Al ₉
23BG023	Hitoshi Sato : Hiroshima Synchrotron Radiation Center, Hiroshima University
	Study on spin texture of new 4f chiral magnet YbNi ₃ Al ₉
23BG024	Chaoyu Chen : Southern University of Science and Technology
	Investigation of electronic structure and possible chiral CDW state in the natural hetero-structure material 6R-TaS ₂
23BG025	Minoru Iwata : Kyushu Institute of Technology
	Design of optical glass for evaluation of UV degradation through on-orbit exposure experiments
23BG026	Masahiro Hara : Graduate School of Science and Technology, Kumamoto University
	Effects of Ar ion irradiation on anatase nanoparticles converted from titanium oxide nanosheets
23BG027	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	Observation of nodal-links and spin-polarized surface states in Heusler-type ferromagnets
23BG028	Akio Kimura : Graduate School of Advanced Science and Engineering, Hiroshima University
	Maximization of anomalous Nernst effect in Fe based ferromagnetic alloy films
23BG029	Jens Ruediger Stellhorn : Department of Physics, Nagoya University
	Structure of Tsai-type M-In-Yb quasicrystals by low-energy X-ray spectroscopy
23BG030	Jayita Nayak: Indian Institute of Technology Kanpur
	Band structure engineering of magnetic Weyl semimetals
23BG031	Jimin Kim : Max Planck Pohang University of Science and Technology
	Investigating charge density wave and Kondo lattice behavior of cerium tellurides
23BG032	Jimin Kim : Max Planck Pohang University of Science and Technology
	Investigating pseudogap and broken time-reversal symmetry phases from the momentum-resolved electronic
	structures of kagome metal, ScV ₆ Sn ₆
23BG033	Shin-ichi Wada : Graduate School of Advanced Science and Engineering, Hiroshima University
	Electronic relaxation dynamics depending on molecular conductivity probed by electron spectroscopy II
23BG034	Shin-ichi Wada : Graduate School of Advanced Science and Engineering, Hiroshima University
	Soft X-ray spectroscopy of phospholipid membranes supported by self-assembled monolayers
23BG035	Shin-ichi Wada : Graduate School of Advanced Science and Engineering, Hiroshima University
	X-ray absorption spectroscopy of functional organic molecules assembled metal nanoparticles made by laser
	ablation
23BG036	Dmitry Estyunin : Saint-Petersburg State University
	Topological phase transition in the MnBi ₂ Te ₄ -based compounds
23BG037	Shinya Hosokawa : Institute of Industrial Nanomaterials, Kumamoto University
	Conduction-band electronic states of Dy-TM metallic glasses having thermal rejuvenation effect
23BG038	Shinya Hosokawa : Institute of Industrial Nanomaterials, Kumamoto University
	Valence-band electronic states of Dy-TM metallic glasses having thermal rejuvenation effect
23BG039	Shilong Wu : Songshan Lake Materials Laboratory
	Unveiling the Dresselhaus-type spin texture by SR-based spin-ARPES
23BG040	Masashi Arita : Hiroshima Synchrotron Radiation Center, Hiroshima University
	ARPES study of strain-induced phase transitions in $Pb_{1-x}Sn_xTe$ and $1T-TaS_2$
23BG041	Baojie Feng : Institute of Physics, Chinese Academy of Sciences

ARPES study of the phase transition in a low-dimensional telluride

- 23BG042 Baojie Feng : Institute of Physics, Chinese Academy of Sciences ARPES study of the band structure of iron nitride
- 23BU001 Subham Majumdar : Indian Association for the Cultivation of Science X-ray magnetic circular dichroisrn (XMCD) study in Fe doped Cr₂ GeC
- 23BU002 Yasuyuki Maki : Faculty of Science, Kyushu University Effect of sugar and sugar alcohol on the thermal stability of protein
- 23BU003 Alexander Shikin : Saint-Petersburg State University Modification of electronic and spin structure of Ge(Pb)_xMn_{1-x}Bi₂Te₄ at the topological phase transitions
- 23BU004 Masahiro Kobayashi : National Institute for Fusion Science Circular dichroism analysis of optical activity in amino acid specimen by polarized quantum beam irradiation
- 23BU005 Tetsuji Sekitani : Graduate School of Advanced Science and Engineering, Hiroshima University NEXAFS study of polymer/fullerene blend films
- 23BU006 Kazuki Sumida : Hiroshima Synchrotron Radiation Center, Hiroshima University Spin-polarized electronic structure of carrier-tuned topological insulators
- 23BU007 Koichiro Yaji : National Institute for Materials Science
 - Electronic structure of multilayer graphene on ferromagnetic substrate
- 23BU008 Daniel S Dessau: University of Colorado Boulder
 - Laser spin-ARPES of topological materials
- 23BU009 Koichi Matsuo : Hiroshima Synchrotron Radiation Center, Hiroshima University Conformation change of Magainin2 depending on the spontaneous curvature of membrane
- 23BU010 Shin-ichiro Ideta : Hiroshima Synchrotron Radiation Center, Hiroshima University Role of charge fluctuations on the electronic structure of cuprates observed by IPES