Strain-Induced Relocation of Topological Surface States in Bi₂Se₃ Single Crystal

Y. Kumar^a, S. Kumar^b, S. Ideta^{a,b}, T. Okuda^{a,b}, K. Shimada^{a,b}

^aGraduate School of Advanced Science and Engineering, Hiroshima University, Japan 739-0046 ^bHiroshima Synchrotron Radiation Centre (HiSOR), Hiroshima University, Japan 739-0046

Keywords: Topological Insulator, in-situ Strain, ARPES, Dirac point, Straintronics.

To investigate the impact of strain on the surface and bulk electronic states of solids, we have developed a new sample holder for *in-situ* strain application for ARPES experiments at low temperatures. In this study, we report the design of the sample holder and ARPES results of a strain-induced modification of the surface and bulk states of Bi₂Se₃ single crystal. Our findings reveal significant alterations in the electronic band structure [6] (in terms of energy and momentum) of the Bi₂Se₃ layered topological insulator [1-4] when subjected to tensile strain. Specifically, tensile strain leads to a closer proximity of the Dirac point (DP) to the Fermi level (lower binding energy), while compressive strain results in the DP moving further away from the Fermi level (higher binding energy). This study demonstrates the tunability of both surface and bulk electronic states in Bi₂Se₃ through the *in-situ* application of strain and underscores the potential of strain engineering for "Straintronics" [5] devices. The sample holder developed for this purpose holds promise for advancing research on the electronic band structures of layered materials, including topological insulators and quantum materials [6-8], under strain conditions.

FIGURE 1. ARPES maps along $\overline{\Gamma} - \overline{K}$ for Bi₂Se₃ single crystal with increasing tensile strain (TS) from TS_1R, to TS_2R, to TS_3R measured at 10 K with 25 eV photon energy. The DP moves to the lower energy. The DP position was not recovered to the original position though we remove the tensile strain (RNP).

TABLE 1.	Changes in	fermi	velocity,	bottom of	conduction	band and	shift in o	dirac point	t with respa	act to appl	ied starin.
	0		, ,					1	1	11	

Change in parameters	No Strain	TS_1R	TS_2R	TS_3R	RNP
$k_F(\text{\AA}^{-1})$	0.0848	0.0846	0.0876	0.1037	0.1080
Bottom of conduction band (eV)	-0.1555	-0.1605	-0.1655	-0.1806	-0.1856
Dirac Point (eV)	-0.3398	-0.3520	-0.3584	-0.3729	-0.3862

REFERENCES

- 1. L. Fu, C.L. Kane, E.J. Mele, Topological Insulators in Three Dimensions, Physical Review Letters 98 (2007) 106803.
- 2. L. Fu, C.L. Kane, Topological insulators with inversion symmetry, Physical Review B 76 (2007) 045302.
- 3. M.Z. Hasan, C.L. Kane, Colloquium: Topological insulators, Reviews of Modern Physics 82 (2010) 3045-3067.
- 4. Y. Ando, Topological Insulator Materials, Journal of the Physical Society of Japan 82 (2013) 102001.
- 5. A.A. Bukharaev, A.K. Zvezdin, A.P. Pyatakov, Y.K. Fetisov, Straintronics: a new trend in micro- and nanoelectronics and materials science, Physics-Uspekhi 61 (2018) 1175.
- S. Riccò, M. Kim, A. Tamai, S. McKeown Walker, F.Y. Bruno, I. Cucchi, E. Cappelli, C. Besnard, T.K. Kim, P. Dudin, M. Hoesch, M.J. Gutmann, A. Georges, R.S. Perry, F. Baumberger, In situ strain tuning of the metal-insulator-transition of Ca₂RuO₄ in angle-resolved photoemission experiments, Nature Communications 9 (2018).
- 7. I. Kostylev, S. Yonezawa, Z. Wang, Y. Ando, Y. Maeno, Uniaxial-strain control of nematic superconductivity in Sr_xBi₂Se₃, Nature Communications 11 (2020) 4152.
- 8. E. Gati, L. Xiang, S.L. Bud'Ko, P.C. Canfield, Hydrostatic and Uniaxial Pressure Tuning of Iron-Based Superconductors: Insights into Superconductivity, Magnetism, Nematicity, and Collapsed Tetragonal Transitions, Annalen der Physik 532 (2020) 2000248.