Fermi surface of chiral magnet Yb(Ni_{1-x}Cu_x)₃Al₉ observed by ARPES

Y. Tanimoto^a, M. Sugimoto^a, R. Kamimori^a, Y. Nakashima^b, H. Sato^c, K. Yamagami^d, M. Arita^c, S. Kumar^c, K. Shimada^c, S. Nakamura^e, S. Ohara^e

^aGraduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

^bFaculty of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

^cHiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan

^dJapan Synchrotron Radiation Research Institute, Sayo 679-5148, Japan

^eGraduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

Keywords: chiral magnetic crystal, helical magnetism, angle resolved photoemission spectroscopy

Trigonal YbNi₃Al₉ has a chiral crystal structure belonging to space group of R32 (No. 155) and is of interest as the first chiral magnetic alloy discovered in 4*f* electron compounds [1]. The localized Yb 4*f* spins are magnetically ordered below T=3.4 K, ferromagnetic in the *c*-plane, and exhibit left-handed or right-handed helimagnetism with propagation vector q=(0, 0, 0.8) [2]. Substitution of Ni with Cu significantly alters the magnetic interaction and shortens the helical propagation vector to q=(0, 0, 0.4) for Yb(Ni_{0.94}Cu_{0.06})₃Al₉. Spin-polarized conduction electrons are thought to be responsible for this phenomenon. In this study, we have performed vacuum ultraviolet and soft x-ray angle-resolved photoemission spectroscopy (VUV-ARPES and SX-ARPES) on YbNi₃Al₉ and Yb(Ni_{0.94}Cu_{0.06})₃Al₉ to observe the Fermi surface. The experiments were carried out at BL-1 and BL-9A of Hiroshima Synchrotron Radiation Center (HSRC), Hiroshima University for VUV-ARPES and at BL-25SU of SPring-8 for SX-ARPES. Single crystals used for the SX-ARPES measurements were synthesized by the flux-method [3].

VUV-ARPES revealed five hole-like Fermi surfaces around the $\overline{\Gamma}$ points and an electronic Fermi surface around the \overline{K} point for YbNi₃Al₉ and Yb(Ni_{0.94}Cu_{0.06})₃Al₉. The Fermi surface of Yb(Ni_{0.94}Cu_{0.06})₃Al₉ is shrink compared to that of YbNi₃Al₉, although the feature is almost unchanged with the Cu substitution.

Figure 1(a) shows the SX-ARPES intensity plots of YbNi₃Al₉ along the $\overline{\Gamma}$ - \overline{M} directions of the surface Brillouin zone measured at hv=548 eV with circular-polarized light. Figure 1(b) shows the angle integrated spectrum. Two flat bands derived from the localized Yb²⁺ 4f_{7/2} states below the Fermi level (*E*_F) and Yb²⁺ 4f_{5/2} states at *E*_B=1.4 eV are observed. Two hole-like bands around the $\overline{\Gamma}$ point cross *E*_F at *k*_x=0.31 and 0.45 Å⁻¹. These two hole-like bands are clearly observed in the VUV-ARPES spectra measured at *hv*=24 eV with *s*-polarized geometry.

Figure 2 represents the Fermi surface of YbNi₃Al₉ measured at $hv=450\sim652$ eV with circular- polarized geometries. The horizontal and vertical axes are the wavenumbers k_x along $\overline{\Gamma}-\overline{M}$ direction of the surface Brillouin zone and k_z along the Γ -Z direction of the bulk Brillouin zone, respectively. A barrel-shaped Fermi surface the with the minimum k_x at the Γ point and the maximum k_x at the Z point is observed, as indicated by a black line. Inside it, in addition, we find another barrel-shaped Fermi surface. On the other hand, the Fermi surface observed around $k_x=0.15$ Å⁻¹(white line) appears to be a drum-shaped Fermi surface with the minimum k_x at the Z point and is closed between the Γ and Z points as indicated by the arrows. These Fermi surfaces are quantitatively consistent with the Fermi surfaces inferred from de Haas-van Alphen effect [4].

Fig. 1 (a) SX-ARPES intensity plots of YbNi₃Al₉ measured along the $\overline{\Gamma}$ - \overline{M} direction measured at hv=548 eV with circular-polarized light. (b) Angle integrated spectrum of (a).

Fig. 2 Fermi surfaces of YbNi₃Al₉ obtained from SX-ARPES spectra measured at *hv*=450~652 eV with circular-polarized light.

REFERENCES

- 1. S. Ohara, S. Fukuta, K. Ohta, H. Kono, T. Yamashita, Y. Matsumoto and J. Yamaura, JPS Conf. Proc. 3, 017016 (2014).
- T. Matsumura, Y. Kita, K. Kubo, Y. Yoshikawa, S. Michimura, T. Inami, Y. Kousaka, K. Inoue and S. Ohara, J. Phys. Soc. Jpn. 86, 124702 (2017).
- 3. T. Yamashita, R. Miyazaki, Y. Aoki and S. Ohara, J. Phys. Soc. Jpn. 81, 034705 (2012).
- 4. S. Ohara, private communication.