ARPES study of TiFe_xS₂ (x = 0, 0.33)

Y. Nakashima^a, Y. Tanimoto^b, M. Sugimoto^b, H. Sato^c, Y. Miyai^b, S. Ideta^c, K. Shimada^c, M. Miyata^d, M. Koyano^d

^aFaculty of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan ^bGraduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

^cHiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan ^dSchool of Materials Science, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan

Keywords: intercalation, superlattice, angle resolved photoemission spectroscopy

1T-TiS₂ is non-magnetic layered material with 1T-CdI₂-type crystal structure. The hexagonal layer of Ti ions is sandwiched between the two hexagonal layers of S ions and the Ti ion is octahedrally coordinated with six S ions. The S-Ti-S triple layers are covalently bonded and these TiS₂ triple layers are weakly coupled with van der Waals (vdW) force. In the vdW gap located between the TiS₂ layers, the other 3*d* transition-metal *M* can be intercalated as M_x TiS₂. Among them, Fe_xTiS₂ exhibits a wide variety of magnetic properties [1]. With increasing the Fe concentration from x = 0, the cluster spin grass (CG) state with the Ising spins is found for x < 0.20. After exhibiting the antiferromagnetic (AFM) state up from x = 0.20 to 0.28, the CG state is again realized for 0.28 < x < 0.38 and the AFM state for 0.38 < x < 0.50. Above x = 0.50, the ferrimagnetic behavior is observed. On the other hand, the Fe ion intercalated in the vdW gap between the TiS₂ layers occupy the octahedral site surrounded by six S ions. X-ray studies reveal the Fe random distribution for x < 0.20, while the formation of $2\sqrt{3}a \times 2a \times 2c$ or $2a \times 2a \times 2c$ superlattices due to the Fe ordering for x = 0.25 and $\sqrt{3}a \times \sqrt{3}a \times 2c$ superlattice for x = 0.33. The rich magnetic states of Fe_xTiS₂ are expected to link to the change in electronic band structure due to the Fe intercalation. In this study, we carried out angle-resolved photoemission spectroscopy (ARPES) to reveal the electronic band structure of Fe_xTiS₂ (x = 0, 0.33) at beamlines BL-1 and BL-7 of Hiroshima Synchrotron Radiation Center (HSRC).

Figure 1(a) shows the ARPES intensity plots of TiS₂ measured at hv=66 eV along the $\overline{\Gamma}-\overline{M}$ directions of the surface Brillouin zone, roughly corresponding to Γ -M direction of the bulk Brillouin zone, estimated from the *hv*-dependent measurements. We find an electron pocket derived from the Ti 3*d* states around the M point. Almost non-dispersive band is observed at binding energy of $E_B = 0.3 \text{ eV}$, which is assigned to the 3*d* states of the Ti ions self-intercalated in the vdW gap between TiS₂ layers. The parabolic band around the Γ point is due to the S 3*p* states.

FIGURE 1. ARPES intensity plots of (a) TiS₂ and (b) Fe_{0.33}TiS₂ measured at hv = 66 eV along $\overline{\Gamma} \cdot \overline{M}$ direction.

Figure 1(b) shows the ARPES intensity plots of Fe_{0.33}TiS₂. The electron pocket around the M point is shifted to higher binding energy. In addition, the parabolic S 3*p* band is also shifted. These results indicate that electrons are transferred from the intercalated Fe ions to host TiS₂ layers. The dispersive Fe 3*d*-derived band is observed around $E_B = 0.3 - 0.7$ eV, reflecting the Fe ions align periodically in the vdW gap parallel to the TiS₂ layers (in plane). The Fe 3*d* band seems to be bent upward before the M point, probably due to the $\sqrt{3}a \times \sqrt{3}a$ periodicity in plane for x = 0.33. We measured the ARPES spectra along the Γ -A direction with changing *hv* from 30 to 124 eV. We find that the Fe 3*d* band exhibits the dispersion along the direction normal to the TiS₂ layers and has half period of the S 3*p* band, reflecting the 2*c* periodicity due to the formation of $\sqrt{3}a \times \sqrt{3}a \times 2c$ superlattice.

REFERENCES

1. N. V. Selezneva, E. M. Sherokalova, A. Podlesnyak, M. Frontzek and N. V. Baranov, Phys. Rev. Mater. 7, 014401 (2023).