24AG042

K. Ideura^a, Y. Nishioka^a, K. Kuroda^{a,b,c}, A. Ino^{d,e}, Y. Miyai^a, S. Ideta^{a,d},
K. Shimada^{a,c,d}, H. Kito^f, I. Hase^f, S. Ishida^f, H. Fujihisa^f, Y. Gotoh^f,
Y. Yoshida^f, A. Iyo^f, H. Ogino^f, H. Eisaki^f, K. Kawashima^{f,g}, A. Kimura^{a,b,c}

^aGraduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

^bInternational Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Higashi-Hiroshima 739-8526, Japan ^cResearch Institute for Semiconductor Engineering, Higashi-Hiroshima 739-8527, Japan ^dResearch Institute for Synchrotron Radiation Science, Hiroshima University, Higashi-Hiroshima 739-0046, Japan ^eKurume Institute of Technology, Kurume 830-0052, Japan ^fNational Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan ^gIMRA JAPAN Co., Ltd., Kariya 448-8650, Japan

Keywords: Superconductor, Dirac line node, Angle resolved photoemission spectroscopy

Recently, Dirac line node (DLN) has been observed in the superconductor ZrPSe, which belongs to the nonsymmorphic space group, with the P square lattice as the glide plane, forming at E-EF = -1.2 eV [1,2]. On the other hand, the Dirac semimetal ZrSiSe with the glide plane as Si does not exhibit superconductivity, and its DLN is located near the Fermi level [3]. This indicates that the substitution of P with Si causes the emergence of superconductivity and the change in the electronic structure. Therefore, by observing the evolution of the electronic structure with *x* in the mixed crystal $ZrSi_{1-x}P_xSe$, it is expected that the mechanism of superconductivity in ZrPSe will be elucidated. In this study, we performed angle-resolved photoemission spectroscopy (ARPES) on single crystal samples of $ZrSi_{1-x}P_xSe$ (x = 0.2, 0.45, 0.72, 1) to directly observe the electronic structure.

Figure 1 (a) shows the Fermi surface at x = 0.72. Electron pockets at the Γ point and point, as well as two large Fermi surfaces (α , β), were observed. As the energy moves away from the Fermi energy, the α and β approach each other and form a diamond shaped DLN at -1.15 eV. On the other hand, the Fermi surface at x = 0.2 shown in Figure 1 (b) has no electron pockets, and the α and β approached each other, and a DLN is formed at -0.2 eV. This observation indicates that the energy of the DLN changes continuously with the change in the substitution amount.

Figure 1: Fermi surface of ZrSi_{1-x}P_xSe, (a) x = 0.72 (hv = 50 eV), (b) x = 0.2 (hv = 39 eV)

In addition, the electron occupancy was determined from the area of the Fermi surface. For all Fermi surfaces (α , β , γ , ε), the electron occupancy increases as the amount of P increases. In particular, the increase is large for the α and β and small for the γ and ε . The total electron occupancy also increases with the amount of P. This means that the amount of change in the α and β accounts for most of the total change. This suggests that the P substitution introduces electrons into the DLN derived from the square lattice.

REFERENCES

1. H. Kito et al., J. Phys. Soc. Jpn. 83, 074713 (2014).

2. S. Ishizaka et al., Phys. Rev. B 105, L121103 (2022).

3. G. Gatti et al., Phys. Rev. Lett. 125, 076401 (2020).